These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28616449)

  • 1. Cyclic deformation and fatigue data for Ti-6Al-4V ELI under variable amplitude loading.
    Carrion PE; Shamsaei N; Moser RD
    Data Brief; 2017 Aug; 13():180-186. PubMed ID: 28616449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-based fatigue data for Ti-6Al-4V ELI under fully-reversed and mean strain loads.
    Carrion PE; Shamsaei N
    Data Brief; 2016 Jun; 7():12-5. PubMed ID: 26952022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.
    Liu YJ; Cui SM; He C; Li JK; Wang QY
    Biomed Mater Eng; 2014; 24(1):263-9. PubMed ID: 24211906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti-6Al-4V with and without heat treatment.
    Sterling AJ; Torries B; Shamsaei N; Thompson SM
    Data Brief; 2016 Mar; 6():970-3. PubMed ID: 26949728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.
    Shrestha R; Simsiriwong J; Shamsaei N
    Data Brief; 2016 Mar; 6():881-4. PubMed ID: 26937465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monotonic and Fatigue Behavior of EBM Manufactured Ti-6Al-4V Solid Samples: Experimental, Analytical and Numerical Investigations.
    Radlof W; Benz C; Heyer H; Sander M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.
    de Krijger J; Rans C; Van Hooreweder B; Lietaert K; Pouran B; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jun; 70():7-16. PubMed ID: 27998687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature.
    Hou X; Liu Z; Wang B; Lv W; Liang X; Hua Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro mechanical integrity of hydroxyapatite coatings on Ti-6Al-4V implants under shear loading.
    Zhang C; Leng Y; Chen J
    J Biomed Mater Res; 2001 Sep; 56(3):342-50. PubMed ID: 11372051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of cyclic delamination lives of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates with considering wear and dissolutions.
    Otsuka Y; Kojima D; Mutoh Y
    J Mech Behav Biomed Mater; 2016 Dec; 64():113-24. PubMed ID: 27498422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Cryogenic Treatment on HCF and FCP Performance of β-Solution Treated Ti-6Al-4V ELI Biomaterial.
    Singla AK; Singh J; Sharma VS; Gupta MK; Song Q; Rozumek D; Krolczyk GM
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening.
    Vantadori S
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design.
    Chen PQ; Lin SJ; Wu SS; So H
    Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.
    Lin CW; Ju CP; Chern Lin JH
    Biomaterials; 2005 Jun; 26(16):2899-907. PubMed ID: 15603785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols.
    Guilherme AS; Henriques GE; Zavanelli RA; Mesquita MF
    J Prosthet Dent; 2005 Apr; 93(4):378-85. PubMed ID: 15798689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of Ti-6Al-4V alloy under cyclic loading in a simulated body environment with cell culturing.
    Doi K; Miyabe S; Tsuchiya H; Fujimoto S
    J Mech Behav Biomed Mater; 2016 Mar; 56():6-13. PubMed ID: 26651063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torsional fatigue resistance of plasma sprayed HA coating on Ti-6Al-4V.
    Yan L; Leng Y; Chen J
    J Mater Sci Mater Med; 2003 Apr; 14(4):291-5. PubMed ID: 15348452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superplasticity of Ti-6Al-4V Titanium Alloy: Microstructure Evolution and Constitutive Modelling.
    Mosleh AO; Mikhaylovskaya AV; Kotov AD; Kwame JS; Aksenov SA
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media.
    Leinenbach C; Eifler D
    Biomaterials; 2006 Mar; 27(8):1200-8. PubMed ID: 16140373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.