These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28616711)
21. A Bayesian approach for determining protein side-chain rotamer conformations using unassigned NOE data. Zeng J; Roberts KE; Zhou P; Donald BR J Comput Biol; 2011 Nov; 18(11):1661-79. PubMed ID: 21970619 [TBL] [Abstract][Full Text] [Related]
22. Dilute liquid crystals used to enhance residual dipolar couplings may alter conformational equilibrium in oligosaccharides. Berthault P; Jeannerat D; Camerel F; Alvarez Salgado F; Boulard Y; Gabriel JC; Desvaux H Carbohydr Res; 2003 Aug; 338(17):1771-85. PubMed ID: 12892944 [TBL] [Abstract][Full Text] [Related]
23. The use of residual dipolar coupling in studying proteins by NMR. Chen K; Tjandra N Top Curr Chem; 2012; 326():47-67. PubMed ID: 21952837 [TBL] [Abstract][Full Text] [Related]
24. Top-down approach in protein RDC data analysis: de novo estimation of the alignment tensor. Chen K; Tjandra N J Biomol NMR; 2007 Aug; 38(4):303-13. PubMed ID: 17593526 [TBL] [Abstract][Full Text] [Related]
25. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. Furuita K; Kataoka S; Sugiki T; Hattori Y; Kobayashi N; Ikegami T; Shiozaki K; Fujiwara T; Kojima C J Biomol NMR; 2015 Jan; 61(1):55-64. PubMed ID: 25428765 [TBL] [Abstract][Full Text] [Related]
26. De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. Rohl CA; Baker D J Am Chem Soc; 2002 Mar; 124(11):2723-9. PubMed ID: 11890823 [TBL] [Abstract][Full Text] [Related]
27. Impact of 15N R2/R1 relaxation restraints on molecular size, shape, and bond vector orientation for NMR protein structure determination with sparse distance restraints. Ryabov Y; Schwieters CD; Clore GM J Am Chem Soc; 2011 Apr; 133(16):6154-7. PubMed ID: 21462982 [TBL] [Abstract][Full Text] [Related]
28. Structure prediction using sparse simulated NOE restraints with Rosetta in CASP11. Ovchinnikov S; Park H; Kim DE; Liu Y; Wang RY; Baker D Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):181-8. PubMed ID: 26857542 [TBL] [Abstract][Full Text] [Related]
29. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections. Cornilescu G; Bahrami A; Tonelli M; Markley JL; Eghbalnia HR J Biomol NMR; 2007 Aug; 38(4):341-51. PubMed ID: 17610130 [TBL] [Abstract][Full Text] [Related]
30. Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics. Lakomek NA; Walter KF; Farès C; Lange OF; de Groot BL; Grubmüller H; Brüschweiler R; Munk A; Becker S; Meiler J; Griesinger C J Biomol NMR; 2008 Jul; 41(3):139-55. PubMed ID: 18523727 [TBL] [Abstract][Full Text] [Related]
32. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. van Dijk AD; Fushman D; Bonvin AM Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902 [TBL] [Abstract][Full Text] [Related]
33. Solving large-scale general phase retrieval problems via a sequence of convex relaxations. Doelman R; Thao NH; Verhaegen M J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1410-1419. PubMed ID: 30110278 [TBL] [Abstract][Full Text] [Related]
34. A HAUSDORFF-BASED NOE ASSIGNMENT ALGORITHM USING PROTEIN BACKBONE DETERMINED FROM RESIDUAL DIPOLAR COUPLINGS AND ROTAMER PATTERNS. Zeng JM; Tripathy C; Zhou P; Donald BR Comput Syst Bioinformatics Conf; 2008; 2008():169-181. PubMed ID: 19122773 [TBL] [Abstract][Full Text] [Related]
35. Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments: effect of approximations on the accuracy of derived structures. Thomas PD; Basus VJ; James TL Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1237-41. PubMed ID: 1996325 [TBL] [Abstract][Full Text] [Related]
36. A Novel Method for Asynchronous Time-of-Arrival-Based Source Localization: Algorithms, Performance and Complexity. Chen Y; Yao Z; Peng Z Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575469 [TBL] [Abstract][Full Text] [Related]
37. Increased usability, algorithmic improvements and incorporation of data mining for structure calculation of proteins with REDCRAFT software package. Cole C; Parks C; Rachele J; Valafar H BMC Bioinformatics; 2020 Dec; 21(Suppl 9):204. PubMed ID: 33272215 [TBL] [Abstract][Full Text] [Related]
38. A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins. Liu Y; Prestegard JH J Biomol NMR; 2010 Aug; 47(4):249-58. PubMed ID: 20506033 [TBL] [Abstract][Full Text] [Related]
39. Refinement of local and long-range structural order in theophylline-binding RNA using (13)C-(1)H residual dipolar couplings and restrained molecular dynamics. Sibille N; Pardi A; Simorre JP; Blackledge M J Am Chem Soc; 2001 Dec; 123(49):12135-46. PubMed ID: 11734011 [TBL] [Abstract][Full Text] [Related]
40. Anisotropic small amplitude Peptide plane dynamics in proteins from residual dipolar couplings. Bernadó P; Blackledge M J Am Chem Soc; 2004 Apr; 126(15):4907-20. PubMed ID: 15080696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]