BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 28616808)

  • 1. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction.
    Panjvani K; Dinh AV; Wahid KA
    Front Plant Sci; 2019; 10():147. PubMed ID: 30815008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological phenotyping of plants for crop improvement.
    Ghanem ME; Marrou H; Sinclair TR
    Trends Plant Sci; 2015 Mar; 20(3):139-44. PubMed ID: 25524213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale field phenotyping using backpack LiDAR and CropQuant-3D to measure structural variation in wheat.
    Zhu Y; Sun G; Ding G; Zhou J; Wen M; Jin S; Zhao Q; Colmer J; Ding Y; Ober ES; Zhou J
    Plant Physiol; 2021 Oct; 187(2):716-738. PubMed ID: 34608970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements.
    Banerjee BP; Spangenberg G; Kant S
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops.
    Fahey T; Pham H; Gardi A; Sabatini R; Stefanelli D; Goodwin I; Lamb DW
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.
    Cabrera-Bosquet L; Crossa J; von Zitzewitz J; Serret MD; Araus JL
    J Integr Plant Biol; 2012 May; 54(5):312-20. PubMed ID: 22420640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving High-Throughput Phenotyping Using Fusion of Close-Range Hyperspectral Camera and Low-Cost Depth Sensor.
    Huang P; Luo X; Jin J; Wang L; Zhang L; Liu J; Zhang Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget.
    Vadez V; Kholová J; Hummel G; Zhokhavets U; Gupta SK; Hash CT
    J Exp Bot; 2015 Sep; 66(18):5581-93. PubMed ID: 26034130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops.
    Furbank RT; Jimenez-Berni JA; George-Jaeggli B; Potgieter AB; Deery DM
    New Phytol; 2019 Sep; 223(4):1714-1727. PubMed ID: 30937909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Internet of Things to Agriculture-The LQ-FieldPheno Platform: A High-Throughput Platform for Obtaining Crop Phenotypes in Field.
    Fan J; Li Y; Yu S; Gou W; Guo X; Zhao C
    Research (Wash D C); 2023; 6():0059. PubMed ID: 36951796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Imaging Resources for Crop Phenotyping and Stress Detection.
    Waiphara P; Bourgenot C; Compton LJ; Prashar A
    Methods Mol Biol; 2022; 2494():255-265. PubMed ID: 35467213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud.
    J R; Nidamanuri RR
    Sci Rep; 2024 Jun; 14(1):14903. PubMed ID: 38942825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotyping: New Windows into the Plant for Breeders.
    Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U
    Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.