BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28616948)

  • 1. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy.
    Wei L; Ma Y; Zhu X; Xu J; Wang Y; Duan H; Xiao L
    Nanoscale; 2017 Jun; 9(25):8747-8755. PubMed ID: 28616948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation.
    Zhang P; Lee S; Yu H; Fang N; Kang SH
    Sci Rep; 2015 Jun; 5():11447. PubMed ID: 26074302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization mapping of nanoparticle plasmonic coupling.
    Crow MJ; Seekell K; Wax A
    Opt Lett; 2011 Mar; 36(5):757-9. PubMed ID: 21368973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Resolution of Plasmonic Resonance Scattering Imaging with Deep Learning.
    Song MK; Ma YP; Liu H; Hu PP; Huang CZ; Zhou J
    Anal Chem; 2022 Mar; 94(11):4610-4616. PubMed ID: 35275492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm.
    Zhang P; Kim K; Lee S; Chakkarapani SK; Fang N; Kang SH
    Sci Rep; 2016 Sep; 6():32863. PubMed ID: 27619347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing local, enhanced optical field characteristics of Au nanoparticle arrays with 10 nm gap using scattering-type scanning near-field optical microscopy.
    Cheng TY; Wang HH; Chang SH; Chu JY; Lee JH; Wang YL; Wang JK
    Phys Chem Chem Phys; 2013 Mar; 15(12):4275-82. PubMed ID: 23439965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes.
    El-Saeed AH; Allam NK
    Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical measurement of directional strain by scattering from nano-disk pairs aligned on an elastomer.
    Kan T; Matsumoto K; Shimoyama I
    Nanotechnology; 2012 Aug; 23(31):315201. PubMed ID: 22796757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D super-localization of intracellular organelle contacts at live single cell by dual-wavelength synchronized fluorescence-free imaging.
    Chakkarapani SK; Zhang P; Kang SH
    Anal Bioanal Chem; 2018 Feb; 410(5):1551-1560. PubMed ID: 29273906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microlens-Assisted Light-Scattering Imaging of Plasmonic Nanoparticles at the Single Particle Level.
    Zhang P; Zhan T; Xue S; Yang H
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Nanoparticle Tracking with Angstrom Localization Precision and Microsecond Time Resolution.
    Ando J; Nakamura A; Visootsat A; Yamamoto M; Song C; Murata K; Iino R
    Biophys J; 2018 Dec; 115(12):2413-2427. PubMed ID: 30527446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercharging Superlocalization Microscopy: How Electrochemical Charging of Plasmonic Nanostructures Uncovers Hidden Heterogeneity.
    Willets KA
    ACS Nano; 2019 Jun; 13(6):6145-6150. PubMed ID: 31184136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals.
    Kumara C; Zuo X; Cullen DA; Dass A
    ACS Nano; 2014 Jun; 8(6):6431-9. PubMed ID: 24813022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis.
    Wang H; Zhang T; Zhou X
    J Phys Condens Matter; 2019 Nov; 31(47):473001. PubMed ID: 31315095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially Resolved Spectroscopic Characterization of Nanostructured Films by Hyperspectral Dark-Field Microscopy.
    Liu Z; Cai C; Wu W; Cai X; Qi ZM
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43186-43196. PubMed ID: 34463092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.