BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 28616968)

  • 21. Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level.
    Cheng ZH; Xiong JR; Min D; Cheng L; Liu DF; Li WW; Jin F; Yang M; Yu HQ
    Biotechnol Bioeng; 2020 May; 117(5):1294-1303. PubMed ID: 32048726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis.
    Li Y; Li Y; Chen Y; Cheng M; Yu H; Song H; Cao Y
    Biotechnol Bioeng; 2022 Oct; 119(10):2806-2818. PubMed ID: 35798677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of 3,3',4',5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1.
    Wang YP; Yu SS; Zhang HL; Li WW; Cheng YY; Yu HQ
    Sci Rep; 2015 Jan; 5():7991. PubMed ID: 25612888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Outer Membrane Vesicles to Increase Extracellular Electron Transfer of
    Yu H; Lu Y; Lan F; Wang Y; Hu C; Mao L; Wu D; Li F; Song H
    ACS Synth Biol; 2023 Jun; 12(6):1645-1656. PubMed ID: 37140342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY.
    Müller J; Shukla S; Jost KA; Spormann AM
    BMC Microbiol; 2013 May; 13():119. PubMed ID: 23705927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.
    Bretschger O; Obraztsova A; Sturm CA; Chang IS; Gorby YA; Reed SB; Culley DE; Reardon CL; Barua S; Romine MF; Zhou J; Beliaev AS; Bouhenni R; Saffarini D; Mansfeld F; Kim BH; Fredrickson JK; Nealson KH
    Appl Environ Microbiol; 2007 Nov; 73(21):7003-12. PubMed ID: 17644630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1.
    Kasai T; Kouzuma A; Nojiri H; Watanabe K
    BMC Microbiol; 2015 Mar; 15():68. PubMed ID: 25886963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Type I-F CRISPR-PAIR platform for multi-mode regulation to boost extracellular electron transfer in
    Chen Y; Cheng M; Song H; Cao Y
    iScience; 2022 Jun; 25(6):104491. PubMed ID: 35712075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular Engineering Strategy to Redirect Electron Flux into the Electron-Transfer Chain for Enhancing Extracellular Electron Transfer in
    Ding Q; Liu Q; Zhang Y; Li F; Song H
    ACS Synth Biol; 2023 Feb; 12(2):471-481. PubMed ID: 36457250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome Analysis to Identify Crucial Genes for Reinforcing Flavins-Mediated Extracellular Electron Transfer in
    Fang L; Li Y; Li Y; Cao Y; Song H
    Front Microbiol; 2022; 13():852527. PubMed ID: 35722328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple Gene Repression in Cyanobacteria Using CRISPRi.
    Yao L; Cengic I; Anfelt J; Hudson EP
    ACS Synth Biol; 2016 Mar; 5(3):207-12. PubMed ID: 26689101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide expression links the electron transfer pathway of Shewanella oneidensis to chemotaxis.
    Tai SK; Wu G; Yuan S; Li KC
    BMC Genomics; 2010 May; 11():319. PubMed ID: 20492688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Bioreduction of Radionuclides by Driving Microbial Extracellular Electron Pumping with an Engineered CRISPR Platform.
    Fan YY; Tang Q; Li FH; Sun H; Min D; Wu JH; Li Y; Li WW; Yu HQ
    Environ Sci Technol; 2021 Sep; 55(17):11997-12008. PubMed ID: 34378391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of gaseous o-xylene degradation in a microbial fuel cell by adding Shewanella oneidensis MR-1.
    You J; Deng Y; Chen H; Ye J; Zhang S; Zhao J
    Chemosphere; 2020 Aug; 252():126571. PubMed ID: 32224361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors.
    Beliaev AS; Klingeman DM; Klappenbach JA; Wu L; Romine MF; Tiedje JM; Nealson KH; Fredrickson JK; Zhou J
    J Bacteriol; 2005 Oct; 187(20):7138-45. PubMed ID: 16199584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Promoting efficiency of microbial extracellular electron transfer by synthetic biology].
    Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):516-534. PubMed ID: 28941349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network.
    Ding DW; Xu J; Li L; Xie JM; Sun X
    Mol Biosyst; 2014 Dec; 10(12):3138-46. PubMed ID: 25227320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular pollutant degradation feedback regulates intracellular electron transfer process of exoelectrogens: Strategy and mechanism.
    Huang J; Cai XL; Peng JR; Fan YY; Xiao X
    Sci Total Environ; 2022 Dec; 853():158630. PubMed ID: 36084783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.