These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28616969)

  • 21. Nanoscale imaging in DNA nanotechnology.
    Jungmann R; Scheible M; Simmel FC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(1):66-81. PubMed ID: 22114058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanomechanical actuation driven by light-induced DNA fuel.
    Eom K; Jung H; Lee G; Park J; Nam K; Lee SW; Yoon DS; Yang J; Kwon T
    Chem Commun (Camb); 2012 Jan; 48(7):955-7. PubMed ID: 21998818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Induced Symmetry Conversion of DNA Origami Lattices.
    Wang Y; Yan X; Zhou Z; Ma N; Tian Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202208290. PubMed ID: 35934673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers.
    Lauback S; Mattioli KR; Marras AE; Armstrong M; Rudibaugh TP; Sooryakumar R; Castro CE
    Nat Commun; 2018 Apr; 9(1):1446. PubMed ID: 29654315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmable motion of DNA origami mechanisms.
    Marras AE; Zhou L; Su HJ; Castro CE
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):713-8. PubMed ID: 25561550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.
    Zhu J; Feng X; Lou J; Li W; Li S; Zhu H; Yang L; Zhang A; He L; Li C
    PLoS One; 2013; 8(8):e69856. PubMed ID: 23990889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overview of DNA origami for molecular self-assembly.
    Saaem I; LaBean TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):150-62. PubMed ID: 23335504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level.
    Okholm AH; Aslan H; Besenbacher F; Dong M; Kjems J
    Nanoscale; 2015 Jul; 7(25):10970-3. PubMed ID: 26061114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami.
    Doane TL; Alam R; Maye MM
    Nanoscale; 2015 Feb; 7(7):2883-8. PubMed ID: 25611367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.
    Yonamine Y; Cervantes-Salguero K; Minami K; Kawamata I; Nakanishi W; Hill JP; Murata S; Ariga K
    Phys Chem Chem Phys; 2016 May; 18(18):12576-81. PubMed ID: 27091668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry.
    Gates EP; Dearden AM; Woolley AT
    Crit Rev Anal Chem; 2014; 44(4):354-70. PubMed ID: 25391721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical Actuation of a DNA Origami Nanolever on an Electrode.
    Kroener F; Heerwig A; Kaiser W; Mertig M; Rant U
    J Am Chem Soc; 2017 Nov; 139(46):16510-16513. PubMed ID: 29111693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-specific immobilization of single-walled carbon nanotubes onto single and one-dimensional DNA origami.
    Mangalum A; Rahman M; Norton ML
    J Am Chem Soc; 2013 Feb; 135(7):2451-4. PubMed ID: 23384162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces.
    Rajendran A; Endo M; Katsuda Y; Hidaka K; Sugiyama H
    ACS Nano; 2011 Jan; 5(1):665-71. PubMed ID: 21188996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis.
    Huang CM; Kucinic A; Le JV; Castro CE; Su HJ
    Nanoscale; 2019 Jan; 11(4):1647-1660. PubMed ID: 30519693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stepwise self-assembly of DNA tile lattices using dsDNA bridges.
    Park SH; Finkelstein G; LaBean TH
    J Am Chem Soc; 2008 Jan; 130(1):40-1. PubMed ID: 18072780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering and mapping nanocavity emission via precision placement of DNA origami.
    Gopinath A; Miyazono E; Faraon A; Rothemund PW
    Nature; 2016 Jul; 535(7612):401-5. PubMed ID: 27398616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. I-motif Formed at Physiological pH Triggered by Spatial Confinement of Nanochannels: An Electrochemical Platform for pH Monitoring in Brain Microdialysates.
    Shi L; Cao F; Zhang L; Tian Y
    Anal Chem; 2020 Mar; 92(6):4535-4540. PubMed ID: 32052626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.