BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 28616990)

  • 21. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs.
    Tarcsay A; Paragi G; Vass M; Jójárt B; Bogár F; Keserű GM
    J Chem Inf Model; 2013 Nov; 53(11):2990-9. PubMed ID: 24116387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding Site and Potency Prediction of Teixobactin and other Lipid II Ligands by Statistical Base Scoring of Conformational Space Maps.
    Lungu CN; Diudea MV
    Curr Comput Aided Drug Des; 2018; 14(1):29-34. PubMed ID: 28969532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations.
    Fulle S; Christ NA; Kestner E; Gohlke H
    J Chem Inf Model; 2010 Aug; 50(8):1489-501. PubMed ID: 20726603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
    Bohnuud T; Kozakov D; Vajda S
    PLoS Comput Biol; 2014 Oct; 10(10):e1003872. PubMed ID: 25275445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A unified conformational selection and induced fit approach to protein-peptide docking.
    Trellet M; Melquiond AS; Bonvin AM
    PLoS One; 2013; 8(3):e58769. PubMed ID: 23516555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.
    Zacarías-Lara OJ; Correa-Basurto J; Bello M
    Biopolymers; 2016 Jul; 105(7):393-413. PubMed ID: 27016043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.
    Tian S; Sun H; Pan P; Li D; Zhen X; Li Y; Hou T
    J Chem Inf Model; 2014 Oct; 54(10):2664-79. PubMed ID: 25233367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Dynamics-Markov State Model of Protein Ligand Binding and Allostery in CRIB-PDZ: Conformational Selection and Induced Fit.
    Thayer KM; Lakhani B; Beveridge DL
    J Phys Chem B; 2017 Jun; 121(22):5509-5514. PubMed ID: 28489401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics.
    Smith RD; Carlson HA
    J Chem Inf Model; 2021 Mar; 61(3):1287-1299. PubMed ID: 33599485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein flexibility and ligand recognition: challenges for molecular modeling.
    Spyrakis F; BidonChanal A; Barril X; Luque FJ
    Curr Top Med Chem; 2011; 11(2):192-210. PubMed ID: 20939788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free-energy landscapes of protein domain movements upon ligand binding.
    Kondo HX; Okimoto N; Morimoto G; Taiji M
    J Phys Chem B; 2011 Jun; 115(23):7629-36. PubMed ID: 21608983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accounting for global protein deformability during protein-protein and protein-ligand docking.
    May A; Zacharias M
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):225-31. PubMed ID: 16214429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.
    De Paris R; Quevedo CV; Ruiz DD; Norberto de Souza O
    PLoS One; 2015; 10(7):e0133172. PubMed ID: 26218832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated Structural Prediction of Flexible Protein-Ligand Complexes: The SLICE Method.
    McFarlane JMB; Krause KD; Paci I
    J Chem Inf Model; 2019 Dec; 59(12):5263-5275. PubMed ID: 31693362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CHARMM-GUI-Based Induced Fit Docking Workflow to Generate Reliable Protein-Ligand Binding Modes.
    Guterres H; Im W
    J Chem Inf Model; 2023 Aug; 63(15):4772-4779. PubMed ID: 37462607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.