BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28617041)

  • 1. A Fluorescence Quenching Analysis of the Binding of Fluoroquinolones to Humic Acid.
    Ferrie RP; Hewitt GE; Anderson BD
    Appl Spectrosc; 2017 Nov; 71(11):2512-2518. PubMed ID: 28617041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the binding of acridine, acridine orange, and acridine yellow G to humic acid through fluorescence quenching.
    Herb JT; Anderson BD
    Appl Spectrosc; 2013 Jul; 67(7):752-6. PubMed ID: 23816127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: A
    Zhao X; Hu Z; Yang X; Cai X; Wang Z; Xie X
    Environ Pollut; 2019 May; 248():815-822. PubMed ID: 30852295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching of fluoroquinolone antibiotics by 4-hydroxy-TEMPO in aqueous solution.
    Żamojć K; Wiczk W; Zaborowski B; Makowski M; Pranczk J; Jacewicz D; Chmurzyński L
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():887-91. PubMed ID: 25027659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence Quenching Studies on the Interactions between Chosen Fluoroquinolones and Selected Stable TEMPO and PROXYL Nitroxides.
    Żamojć K; Bylińska I; Wiczk W; Chmurzyński L
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of wogonin with bovine serum albumin.
    Tian J; Liu J; Hu Z; Chen X
    Bioorg Med Chem; 2005 Jun; 13(12):4124-9. PubMed ID: 15911327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method.
    Zhang LW; Wang K; Zhang XX
    Anal Chim Acta; 2007 Nov; 603(1):101-10. PubMed ID: 17950064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of binding between fluoroquinolones and pepsin by fluorescence spectroscopy and molecular simulation.
    Lian SQ; Lian J; Wang GR; Li L; Yang DZ; Xue YS
    Luminescence; 2019 Sep; 34(6):595-601. PubMed ID: 31074200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding thermodynamics at the human cannabinoid CB1 and CB2 receptors.
    Merighi S; Simioni C; Gessi S; Varani K; Borea PA
    Biochem Pharmacol; 2010 Feb; 79(3):471-7. PubMed ID: 19766600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral characterization, degradation behavior, quenching, and semi-quantification of fluoroquinolone antibiotics in the antibiotic-humic mixture using fluorescence spectroscopy.
    Niloy NM; Parvin F; Tareq SM
    Sci Total Environ; 2024 Jul; 935():173346. PubMed ID: 38777063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic studies of interaction of chlorobenzylidine with DNA.
    Zhong W; Yu JS; Huang W; Ni K; Liang Y
    Biopolymers; 2001; 62(6):315-23. PubMed ID: 11857270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding characteristics of fluoroquinolones to synthetic levodopa melanin.
    Ono C; Tanaka M
    J Pharm Pharmacol; 2003 Aug; 55(8):1127-33. PubMed ID: 12956903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of ofloxacin fluorescence quenching and complexation by Cu(II).
    Pan B; Han X; Wu M; Peng H; Zhang D; Li H; Xing B
    Environ Pollut; 2012 Dec; 171():168-73. PubMed ID: 22922456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding interaction of a prospective chemotherapeutic antibacterial drug with β-lactoglobulin: results and challenges.
    Paul BK; Ghosh N; Mukherjee S
    Langmuir; 2014 May; 30(20):5921-9. PubMed ID: 24807302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the binding interaction and kinetics of a prospective anti-HIV drug with a model transport protein: results and challenges.
    Paul BK; Ray D; Guchhait N
    Phys Chem Chem Phys; 2013 Jan; 15(4):1275-87. PubMed ID: 23232916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of A2B adenosine receptor binding discriminates agonistic from antagonistic behaviour.
    Gessi S; Fogli E; Sacchetto V; Varani K; Merighi S; Leung E; Lennan SM; Borea PA
    Biochem Pharmacol; 2008 Jan; 75(2):562-9. PubMed ID: 17936250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of isofraxidin to bovine serum albumin.
    Liu J; Tian J; Hu Z; Chen X
    Biopolymers; 2004 Mar; 73(4):443-50. PubMed ID: 14991661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of glycine zipper fragments of Aβ-peptides with neuronal nitric oxide synthase: kinetic, thermodynamic and spectrofluorimetric analysis.
    Padayachee ER; Whiteley CG
    Neuropeptides; 2013 Jun; 47(3):171-8. PubMed ID: 23375441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA influence on norfloxacin fluorescence.
    Perianu E; Rau I; Vijan LE
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():8-15. PubMed ID: 30081272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques.
    Wu D; Chen Z
    Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.