BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28617220)

  • 1. A theorem proving approach for automatically synthesizing visualizations of flow cytometry data.
    Raj S; Hussain F; Husein Z; Torosdagli N; Turgut D; Deo N; Pattanaik S; Chang CJ; Jha SK
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):245. PubMed ID: 28617220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.
    Qiu P
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1045-51. PubMed ID: 26357042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Projection Methods-Induced Biases at Subgroup Detection for Machine-Learning Based Data-Analysis of Biomedical Data.
    Lötsch J; Ultsch A
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding.
    Mazza EMC; Brummelman J; Alvisi G; Roberto A; De Paoli F; Zanon V; Colombo F; Roederer M; Lugli E
    Cytometry A; 2018 Aug; 93(8):785-792. PubMed ID: 30107099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatically generate two-dimensional gating hierarchy from clustered cytometry data.
    Yang X; Qiu P
    Cytometry A; 2018 Oct; 93(10):1039-1050. PubMed ID: 30176185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets.
    Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T
    Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.
    Lin L; Frelinger J; Jiang W; Finak G; Seshadri C; Bart PA; Pantaleo G; McElrath J; DeRosa S; Gottardo R
    Cytometry A; 2015 Jul; 87(7):675-82. PubMed ID: 25908275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-guided clustering of multi-dimensional flow cytometry datasets.
    Zeng QT; Pratt JP; Pak J; Ravnic D; Huss H; Mentzer SJ
    J Biomed Inform; 2007 Jun; 40(3):325-31. PubMed ID: 16901761
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Opzoomer JW; Timms JA; Blighe K; Mourikis TP; Chapuis N; Bekoe R; Kareemaghay S; Nocerino P; Apollonio B; Ramsay AG; Tavassoli M; Harrison C; Ciccarelli F; Parker P; Fontenay M; Barber PR; Arnold JN; Kordasti S
    Elife; 2021 Apr; 10():. PubMed ID: 33929322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative exploration of multidimensional flow cytometry software: a model approach evaluating T cell polyfunctional behavior.
    Spear TT; Nishimura MI; Simms PE
    J Leukoc Biol; 2017 Aug; 102(2):551-561. PubMed ID: 28550117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multidimensional classification approach for the automated analysis of flow cytometry data.
    Pedreira CE; Costa ES; Arroyo ME; Almeida J; Orfao A
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1155-62. PubMed ID: 18334408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data.
    Van Gassen S; Callebaut B; Van Helden MJ; Lambrecht BN; Demeester P; Dhaene T; Saeys Y
    Cytometry A; 2015 Jul; 87(7):636-45. PubMed ID: 25573116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational flow cytometry: helping to make sense of high-dimensional immunology data.
    Saeys Y; Van Gassen S; Lambrecht BN
    Nat Rev Immunol; 2016 Jul; 16(7):449-62. PubMed ID: 27320317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data.
    Tong DL; Ball GR; Pockley AG
    Cytometry A; 2015 Jul; 87(7):616-23. PubMed ID: 25572884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design.
    Naim I; Datta S; Rebhahn J; Cavenaugh JS; Mosmann TR; Sharma G
    Cytometry A; 2014 May; 85(5):408-21. PubMed ID: 24677621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of High-Dimensional Phenotype Data Generated by Mass Cytometry or High-Dimensional Flow Cytometry.
    Cirovic B; Katzmarski N; Schlitzer A
    Methods Mol Biol; 2019; 1989():281-294. PubMed ID: 31077112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithmic Tools for Mining High-Dimensional Cytometry Data.
    Chester C; Maecker HT
    J Immunol; 2015 Aug; 195(3):773-9. PubMed ID: 26188071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-Driven Flow Cytometry Analysis.
    Wang S; Brinkman RR
    Methods Mol Biol; 2019; 1989():245-265. PubMed ID: 31077110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.