BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 28617222)

  • 1. An extensive assessment of network alignment algorithms for comparison of brain connectomes.
    Milano M; Guzzi PH; Tymofieva O; Xu D; Hess C; Veltri P; Cannataro M
    BMC Bioinformatics; 2017 Jun; 18(Suppl 6):235. PubMed ID: 28617222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain without anatomy: construction and comparison of fully network-driven structural MRI connectomes.
    Tymofiyeva O; Ziv E; Barkovich AJ; Hess CP; Xu D
    PLoS One; 2014; 9(5):e96196. PubMed ID: 24789312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential.
    Yeh CH; Smith RE; Dhollander T; Calamante F; Connelly A
    Neuroimage; 2019 Oct; 199():160-171. PubMed ID: 31082471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-Specific Structural Parcellations Based on Randomized AB-divergences.
    Honnorat N; Parker D; Tunç B; Davatzikos C; Verma R
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():407-415. PubMed ID: 29075681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network alignment and similarity reveal atlas-based topological differences in structural connectomes.
    Frigo M; Cruciani E; Coudert D; Deriche R; Natale E; Deslauriers-Gauthier S
    Netw Neurosci; 2021; 5(3):711-733. PubMed ID: 34746624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes.
    Farahibozorg SR; Henson RN; Hauk O
    Neuroimage; 2018 Apr; 169():23-45. PubMed ID: 28893608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph alignment exploiting the spatial organization improves the similarity of brain networks.
    Calissano A; Papadopoulo T; Pennec X; Deslauriers-Gauthier S
    Hum Brain Mapp; 2024 Jan; 45(1):e26554. PubMed ID: 38224543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?
    Civier O; Smith RE; Yeh CH; Connelly A; Calamante F
    Neuroimage; 2019 Jul; 194():68-81. PubMed ID: 30844506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping population-based structural connectomes.
    Zhang Z; Descoteaux M; Zhang J; Girard G; Chamberland M; Dunson D; Srivastava A; Zhu H
    Neuroimage; 2018 May; 172():130-145. PubMed ID: 29355769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering-based multi-view network fusion for estimating brain network atlases of healthy and disordered populations.
    Dhifallah S; Rekik I;
    J Neurosci Methods; 2019 Jan; 311():426-435. PubMed ID: 30282004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.
    Kerepesi C; Varga B; Szalkai B; Grolmusz V
    Neurosci Lett; 2018 Apr; 673():51-55. PubMed ID: 29496609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated individual cortical parcellation via consensus graph representation learning.
    Wen X; Yang M; Qi S; Wu X; Zhang D
    Neuroimage; 2024 Jun; 293():120616. PubMed ID: 38697587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    PLoS One; 2016; 11(6):e0158680. PubMed ID: 27362431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.
    Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P
    Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain parcellation based on information theory.
    Bonmati E; Bardera A; Boada I
    Comput Methods Programs Biomed; 2017 Nov; 151():203-212. PubMed ID: 28947002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the resolution of brain parcels on connectome-wide association studies in fMRI.
    Bellec P; Benhajali Y; Carbonell F; Dansereau C; Albouy G; Pelland M; Craddock C; Collignon O; Doyon J; Stip E; Orban P
    Neuroimage; 2015 Dec; 123():212-28. PubMed ID: 26241681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.