BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28617230)

  • 1. Predicting anatomic therapeutic chemical classification codes using tiered learning.
    Olson T; Singh R
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):266. PubMed ID: 28617230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network predicting drug's anatomical therapeutic chemical code.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2013 May; 29(10):1317-24. PubMed ID: 23564845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNPredATC: A Deep Residual Learning-Based Model With Applications to the Prediction of Drug-ATC Code Association.
    Zhao H; Duan G; Ni P; Yan C; Li Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2712-2723. PubMed ID: 34110998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of drug's Anatomical Therapeutic Chemical (ATC) code by integrating drug-domain network.
    Chen FS; Jiang ZR
    J Biomed Inform; 2015 Dec; 58():80-88. PubMed ID: 26434987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources.
    Liu Z; Guo F; Gu J; Wang Y; Li Y; Wang D; Lu L; Li D; He F
    Bioinformatics; 2015 Jun; 31(11):1788-95. PubMed ID: 25638810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional Neural Networks for ATC Classification.
    Lumini A; Nanni L
    Curr Pharm Des; 2018; 24(34):4007-4012. PubMed ID: 30417778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DACPGTN: Drug ATC Code Prediction Method Based on Graph Transformer Network for Drug Discovery.
    Yan C; Suo Z; Wang J; Zhang G; Luo H
    Front Pharmacol; 2022; 13():907676. PubMed ID: 35721178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDATC-NCPMKL: Predicting drug's Anatomical Therapeutic Chemical (ATC) codes based on network consistency projection and multiple kernel learning.
    Chen L; Xu J; Zhou Y
    Comput Biol Med; 2024 Feb; 169():107862. PubMed ID: 38150886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug repositioning by prediction of drug's anatomical therapeutic chemical code via network-based inference approaches.
    Peng Y; Wang M; Xu Y; Wu Z; Wang J; Zhang C; Liu G; Li W; Li J; Tang Y
    Brief Bioinform; 2021 Mar; 22(2):2058-2072. PubMed ID: 32221552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognizing novel chemicals/drugs for anatomical therapeutic chemical classes with a heat diffusion algorithm.
    Liang H; Hu B; Chen L; Wang S; Aorigele
    Biochim Biophys Acta Mol Basis Dis; 2020 Nov; 1866(11):165910. PubMed ID: 32768680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method.
    Wang X; Wang Y; Xu Z; Xiong Y; Wei DQ
    Front Pharmacol; 2019; 10():971. PubMed ID: 31543820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?
    Sahu NU; Kharkar PS
    Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved machine learning models for predicting selective compounds.
    Ning X; Walters M; Karypis G
    J Chem Inf Model; 2012 Jan; 52(1):38-50. PubMed ID: 22107358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.
    Chen L; Lu J; Zhang N; Huang T; Cai YD
    Mol Biosyst; 2014 Apr; 10(4):868-77. PubMed ID: 24492783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method.
    Chu Y; Shan X; Chen T; Jiang M; Wang Y; Wang Q; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32964234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.