BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 28617242)

  • 1. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice.
    Chew KS; Renna JM; McNeill DS; Fernandez DC; Keenan WT; Thomsen MB; Ecker JL; Loevinsohn GS; VanDunk C; Vicarel DC; Tufford A; Weng S; Gray PA; Cayouette M; Herzog ED; Zhao H; Berson DM; Hattar S
    Elife; 2017 Jun; 6():. PubMed ID: 28617242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
    Prigge CL; Yeh PT; Liou NF; Lee CC; You SF; Liu LL; McNeill DS; Chew KS; Hattar S; Chen SK; Zhang DQ
    J Neurosci; 2016 Jul; 36(27):7184-97. PubMed ID: 27383593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment.
    Lin MS; Liao PY; Chen HM; Chang CP; Chen SK; Chern Y
    J Neurosci; 2019 Feb; 39(8):1505-1524. PubMed ID: 30587542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei.
    Beier C; Zhang Z; Yurgel M; Hattar S
    J Comp Neurol; 2021 Jun; 529(8):1863-1875. PubMed ID: 33104235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.
    Kofuji P; Mure LS; Massman LJ; Purrier N; Panda S; Engeland WC
    PLoS One; 2016; 11(12):e0168651. PubMed ID: 27992553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment.
    Chen SK; Chew KS; McNeill DS; Keeley PW; Ecker JL; Mao BQ; Pahlberg J; Kim B; Lee SC; Fox MA; Guido W; Wong KY; Sampath AP; Reese BE; Kuruvilla R; Hattar S
    Neuron; 2013 Feb; 77(3):503-15. PubMed ID: 23395376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Retinal Basis of Light Aversion in Neonatal Mice.
    Caval-Holme FS; Aranda ML; Chen AQ; Tiriac A; Zhang Y; Smith B; Birnbaumer L; Schmidt TM; Feller MB
    J Neurosci; 2022 May; 42(20):4101-4115. PubMed ID: 35396331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.
    Purrier N; Engeland WC; Kofuji P
    PLoS One; 2014; 9(10):e111449. PubMed ID: 25357191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells.
    Arroyo DA; Kirkby LA; Feller MB
    J Neurosci; 2016 Jun; 36(26):6892-905. PubMed ID: 27358448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina.
    Pottackal J; Walsh HL; Rahmani P; Zhang K; Justice NJ; Demb JB
    J Neurosci; 2021 Feb; 41(7):1489-1504. PubMed ID: 33397711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture of retinal projections to the central circadian pacemaker.
    Fernandez DC; Chang YT; Hattar S; Chen SK
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6047-52. PubMed ID: 27162356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian Behavioral Responses to Light and Optic Chiasm-Evoked Glutamatergic EPSCs in the Suprachiasmatic Nucleus of ipRGC Conditional vGlut2 Knock-Out Mice.
    Moldavan MG; Sollars PJ; Lasarev MR; Allen CN; Pickard GE
    eNeuro; 2018; 5(3):. PubMed ID: 29756029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits.
    Sonoda T; Lee SK; Birnbaumer L; Schmidt TM
    Neuron; 2018 Aug; 99(4):754-767.e4. PubMed ID: 30017393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina.
    Vuong HE; Hardi CN; Barnes S; Brecha NC
    J Neurosci; 2015 Dec; 35(48):15955-70. PubMed ID: 26631476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A retinal ganglion cell that can signal irradiance continuously for 10 hours.
    Wong KY
    J Neurosci; 2012 Aug; 32(33):11478-85. PubMed ID: 22895730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of melanopsin-based irradiance detecting circuitry.
    McNeill DS; Sheely CJ; Ecker JL; Badea TC; Morhardt D; Guido W; Hattar S
    Neural Dev; 2011 Mar; 6():8. PubMed ID: 21418557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.
    Procyk CA; Eleftheriou CG; Storchi R; Allen AE; Milosavljevic N; Brown TM; Lucas RJ
    J Neurophysiol; 2015 Aug; 114(2):1321-30. PubMed ID: 26084909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions.
    Aranda ML; Schmidt TM
    Cell Mol Life Sci; 2021 Feb; 78(3):889-907. PubMed ID: 32965515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs.
    Chen SK; Badea TC; Hattar S
    Nature; 2011 Jul; 476(7358):92-5. PubMed ID: 21765429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.