These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28617343)

  • 1. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms.
    Castro P; Elvira L; Maestre JR; Montero de Espinosa F
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Monitoring of Platelet Activation Using Quartz Thickness-Shear Mode Resonator Sensors.
    Wu H; Zhao G; Zu H; Wang JH; Wang QM
    Biophys J; 2016 Feb; 110(3):669-679. PubMed ID: 26840731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of torsional resonators to monitor electroactive biofilms.
    Sievers P; Moß C; Schröder U; Johannsmann D
    Biosens Bioelectron; 2018 Jul; 110():225-232. PubMed ID: 29625330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging-related viscoelasticity variation of tendon stem cells (TSCs) characterized by quartz thickness shear mode (TSM) resonators.
    Wu H; Zhao G; Zu H; Wang JH; Wang QM
    Sens Actuators (Warrendale Pa); 2015 Apr; 210():369-380. PubMed ID: 26251564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental-Stress-Induced Increased Softness of Electroactive Biofilms, Determined with a Torsional Quartz Crystal Microbalance.
    Sievers P; Johannsmann D
    Anal Chem; 2019 Nov; 91(22):14476-14481. PubMed ID: 31610643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Development of Microscale Thickness Shear Mode (TSM) Resonators for Sensing Neuronal Adhesion.
    Khraiche ML; Rogul J; Muthuswamy J
    Front Neurosci; 2019; 13():518. PubMed ID: 31213969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance.
    Pax M; Rieger J; Eibl RH; Thielemann C; Johannsmann D
    Analyst; 2005 Nov; 130(11):1474-7. PubMed ID: 16222366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting
    Ripa R; Shen AQ; Funari R
    ACS Omega; 2020 Feb; 5(5):2295-2302. PubMed ID: 32064391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements.
    Reipa V; Almeida J; Cole KD
    J Microbiol Methods; 2006 Sep; 66(3):449-59. PubMed ID: 16580080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between EPS adherence, viscoelastic properties, and MBR operation: Biofouling study with QCM-D.
    Sweity A; Ying W; Ali-Shtayeh MS; Yang F; Bick A; Oron G; Herzberg M
    Water Res; 2011 Dec; 45(19):6430-40. PubMed ID: 22014563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid, non-destructive method for the determination of Staphylococcus epidermidis adhesion to surfaces using quartz crystal resonant sensor technology.
    Pavey KD; Barnes LM; Hanlon GW; Olliff CJ; Ali Z; Paul F
    Lett Appl Microbiol; 2001 Nov; 33(5):344-8. PubMed ID: 11696093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency shift of a crystal quartz resonator in thickness-shear modes induced by an array of hemispherical material units.
    Yuantai Hu ; Huiliang Hu ; Bin Luo ; Huan Xue ; Jiemin Xie ; Ji Wang
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1777-82. PubMed ID: 25004547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved biofilm deformation measurements using optical coherence tomography.
    Blauert F; Horn H; Wagner M
    Biotechnol Bioeng; 2015 Sep; 112(9):1893-905. PubMed ID: 25786671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal amplification with multilayer arrangements on chemical quartz-crystal-resonator sensors.
    Lucklum R; Behling C; Hauptmann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1246-52. PubMed ID: 18238667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SC-Cut Quartz Resonators for Dynamic Liquid Viscosity Measurements.
    Ju S; Zhang C; Zahedinejad P; Zhang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3616-3623. PubMed ID: 34255627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative quantitative acoustical and electrical method for detection of cell adhesion process in real-time.
    Le Guillou-Buffello D; Gindre M; Johnson P; Laugier P; Migonney V
    Biotechnol Bioeng; 2011 Apr; 108(4):947-62. PubMed ID: 21404267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique.
    Le Guillou-Buffello D; Hélary G; Gindre M; Pavon-Djavid G; Laugier P; Migonney V
    Biomaterials; 2005 Jul; 26(19):4197-205. PubMed ID: 15664647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Rheometry of Thin Soft Materials Using the Quartz Crystal Microbalance with Dissipation.
    Sadman K; Wiener CG; Weiss RA; White CC; Shull KR; Vogt BD
    Anal Chem; 2018 Mar; 90(6):4079-4088. PubMed ID: 29473414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.