These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28617451)

  • 1. Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals.
    Farag MA; Song GC; Park YS; Audrain B; Lee S; Ghigo JM; Kloepper JW; Ryu CM
    Nat Protoc; 2017 Jul; 12(7):1359-1377. PubMed ID: 28617451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.
    Chung JH; Song GC; Ryu CM
    Plant Mol Biol; 2016 Apr; 90(6):677-87. PubMed ID: 26177913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sniffing bacterial volatile compounds for healthier plants.
    Sharifi R; Ryu CM
    Curr Opin Plant Biol; 2018 Aug; 44():88-97. PubMed ID: 29579577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of bacterial volatile compounds in bacterial biology.
    Audrain B; Farag MA; Ryu CM; Ghigo JM
    FEMS Microbiol Rev; 2015 Mar; 39(2):222-33. PubMed ID: 25725014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the two compartments Petri-dish: optimising growth promotion and induced resistance in cucumber exposed to gaseous bacterial volatiles in a miniature greenhouse system.
    Song GC; Riu M; Ryu CM
    Plant Methods; 2019; 15():9. PubMed ID: 30733821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smells from the desert: Microbial volatiles that affect plant growth and development of native and non-native plant species.
    Camarena-Pozos DA; Flores-Núñez VM; López MG; López-Bucio J; Partida-Martínez LP
    Plant Cell Environ; 2019 Apr; 42(4):1368-1380. PubMed ID: 30378133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions.
    Weisskopf L; Schulz S; Garbeva P
    Nat Rev Microbiol; 2021 Jun; 19(6):391-404. PubMed ID: 33526910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile Compounds From
    Heenan-Daly D; Coughlan S; Dillane E; Doyle Prestwich B
    Front Microbiol; 2021; 12():628437. PubMed ID: 34367077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual functionality of natural mixtures of bacterial volatile compounds on plant growth.
    Song GC; Jeon JS; Sim HJ; Lee S; Jung J; Kim SG; Moon SY; Ryu CM
    J Exp Bot; 2022 Jan; 73(2):571-583. PubMed ID: 34679179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03).
    Xie X; Zhang H; Paré PW
    Plant Signal Behav; 2009 Oct; 4(10):948-53. PubMed ID: 19826235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future.
    Sharifi R; Ryu CM
    Ann Bot; 2018 Aug; 122(3):349-358. PubMed ID: 29982345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Volatile Compounds: Functions in Communication, Cooperation, and Competition.
    Netzker T; Shepherdson EMF; Zambri MP; Elliot MA
    Annu Rev Microbiol; 2020 Sep; 74():409-430. PubMed ID: 32667838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.
    Fincheira P; Venthur H; Mutis A; Parada M; Quiroz A
    Microbiol Res; 2016 Dec; 193():39-47. PubMed ID: 27825485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial volatiles promote growth in Arabidopsis.
    Ryu CM; Farag MA; Hu CH; Reddy MS; Wei HX; Paré PW; Kloepper JW
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4927-32. PubMed ID: 12684534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatiles of rhizobacteria Serratia and Stenotrophomonas alter growth and metabolite composition of Arabidopsis thaliana.
    Wenke K; Kopka J; Schwachtje J; van Dongen JT; Piechulla B
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1():109-119. PubMed ID: 30030887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airborne Bacterial Interactions: Functions Out of Thin Air?
    Audrain B; Létoffé S; Ghigo JM
    Front Microbiol; 2015; 6():1476. PubMed ID: 26733998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics of plant volatiles.
    Qualley AV; Dudareva N
    Methods Mol Biol; 2009; 553():329-43. PubMed ID: 19588114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explaining evolution of plant communication by airborne signals.
    Heil M; Karban R
    Trends Ecol Evol; 2010 Mar; 25(3):137-44. PubMed ID: 19837476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants.
    Liu W; Mazarei M; Rudis MR; Fethe MH; Peng Y; Millwood RJ; Schoene G; Burris JN; Stewart CN
    Plant Biotechnol J; 2013 Jan; 11(1):43-52. PubMed ID: 23121613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.
    Delaplace P; Delory BM; Baudson C; Mendaluk-Saunier de Cazenave M; Spaepen S; Varin S; Brostaux Y; du Jardin P
    BMC Plant Biol; 2015 Aug; 15():195. PubMed ID: 26264238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.