BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28617486)

  • 21. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer.
    Zhen Z; Tang W; Guo C; Chen H; Lin X; Liu G; Fei B; Chen X; Xu B; Xie J
    ACS Nano; 2013 Aug; 7(8):6988-96. PubMed ID: 23829542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis.
    Nishie H; Kataoka H; Yano S; Kikuchi JI; Hayashi N; Narumi A; Nomoto A; Kubota E; Joh T
    Oncotarget; 2016 Nov; 7(45):74259-74268. PubMed ID: 27708235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy.
    Zhen Z; Tang W; Zhang W; Xie J
    Nanoscale; 2015 Jun; 7(23):10330-3. PubMed ID: 25998995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy.
    Jin CS; Cui L; Wang F; Chen J; Zheng G
    Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magneto low-density nanoemulsion (MLDE): A potential vehicle for combined hyperthermia and photodynamic therapy to treat cancer selectively.
    Pellosi DS; Macaroff PP; Morais PC; Tedesco AC
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():103-111. PubMed ID: 30184726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photodynamic therapy efficacy enhanced by dynamics: the role of charge transfer and photostability in the selection of photosensitizers.
    Arnaut LG; Pereira MM; Dąbrowski JM; Silva EF; Schaberle FA; Abreu AR; Rocha LB; Barsan MM; Urbańska K; Stochel G; Brett CM
    Chemistry; 2014 Apr; 20(18):5346-57. PubMed ID: 24644142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sinoporphyrin sodium mediated photodynamic therapy inhibits the migration associated with collapse of F-actin filaments cytoskeleton in MDA-MB-231 cells.
    Wu L; Wang X; Liu Q; Wingnang Leung A; Wang P; Xu C
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():58-65. PubMed ID: 26742781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.
    Li W; Tan G; Cheng J; Zhao L; Wang Z; Jin Y
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27136527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorin e6-Encapsulated Polyphosphoester Based Nanocarriers with Viscous Flow Core for Effective Treatment of Pancreatic Cancer.
    Ding F; Li HJ; Wang JX; Tao W; Zhu YH; Yu Y; Yang XZ
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18856-65. PubMed ID: 26267601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trisulfonated porphyrazines: new photosensitizers for the treatment of retinal and subretinal edema.
    van Lier JE; Tian H; Ali H; Cauchon N; Hasséssian HM
    J Med Chem; 2009 Jul; 52(14):4107-10. PubMed ID: 19514748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An amphiphilic bisporphyrin and its Yb(III) complex: development of a bifunctional photodynamic therapeutic and near-infrared tumor-imaging agent.
    Jiang FL; Poon CT; Wong WK; Koon HK; Mak NK; Choi CY; Kwong DW; Liu Y
    Chembiochem; 2008 May; 9(7):1034-9. PubMed ID: 18383057
    [No Abstract]   [Full Text] [Related]  

  • 33. A charge-switchable, four-armed polymeric photosensitizer for photodynamic cancer therapy.
    Lee CS; Park W; Jo YU; Na K
    Chem Commun (Camb); 2014 Apr; 50(33):4354-7. PubMed ID: 24643769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current clinical and preclinical photosensitizers for use in photodynamic therapy.
    Detty MR; Gibson SL; Wagner SJ
    J Med Chem; 2004 Jul; 47(16):3897-915. PubMed ID: 15267226
    [No Abstract]   [Full Text] [Related]  

  • 35. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy.
    Wang Y; Wang H; Liu D; Song S; Wang X; Zhang H
    Biomaterials; 2013 Oct; 34(31):7715-24. PubMed ID: 23859660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy.
    Xie L; Wang G; Zhou H; Zhang F; Guo Z; Liu C; Zhang X; Zhu L
    Biomaterials; 2016 Oct; 103():219-228. PubMed ID: 27392290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intensive tumor suppression by anti-angiogenic photodynamic therapy with polycation-modified liposomal photosensitizer.
    Takeuchi Y; Kurohane K; Nango M; Oku N
    Cell Mol Biol Lett; 2002; 7(2):301. PubMed ID: 12097971
    [No Abstract]   [Full Text] [Related]  

  • 38. Benzochloroporphyrin derivative photosensitizer-mediated photodynamic therapy for Ewing sarcoma.
    Sun M; Zhou C; Zeng H; Yin F; Wang Z; Yao J; Hua Y; Cai Z
    J Photochem Photobiol B; 2016 Jul; 160():178-84. PubMed ID: 27113445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers.
    Lu K; He C; Lin W
    J Am Chem Soc; 2015 Jun; 137(24):7600-3. PubMed ID: 26068094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanorod-photosensitizer complex obtained by layer-by-layer method for photodynamic/photothermal therapy in vitro.
    Kim SB; Lee TH; Yoon I; Shim YK; Lee WK
    Chem Asian J; 2015 Mar; 10(3):563-7. PubMed ID: 25630881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.