BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 28617487)

  • 61. Organ-on-a-chip systems: translating concept into practice.
    Shuler ML
    Lab Chip; 2020 Aug; 20(17):3072-3073. PubMed ID: 32803205
    [No Abstract]   [Full Text] [Related]  

  • 62. Microengineered biomimetic ocular models for ophthalmological drug development.
    Estlack Z; Bennet D; Reid T; Kim J
    Lab Chip; 2017 May; 17(9):1539-1551. PubMed ID: 28401229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-contained, low-cost Body-on-a-Chip systems for drug development.
    Wang YI; Oleaga C; Long CJ; Esch MB; McAleer CW; Miller PG; Hickman JJ; Shuler ML
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1701-1713. PubMed ID: 29065797
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultrasound assisted particle and cell manipulation on-chip.
    Mulvana H; Cochran S; Hill M
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1600-10. PubMed ID: 23906935
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lab-on-a-chip technology: impacting non-invasive prenatal diagnostics (NIPD) through miniaturisation.
    Kantak C; Chang CP; Wong CC; Mahyuddin A; Choolani M; Rahman A
    Lab Chip; 2014 Mar; 14(5):841-54. PubMed ID: 24452749
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models.
    Rothbauer M; Rosser JM; Zirath H; Ertl P
    Curr Opin Biotechnol; 2019 Feb; 55():81-86. PubMed ID: 30189349
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies.
    Phillips JA; Grandhi TSP; Davis M; Gautier JC; Hariparsad N; Keller D; Sura R; Van Vleet TR
    Lab Chip; 2020 Feb; 20(3):468-476. PubMed ID: 31989145
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook.
    Bal-Öztürk A; Miccoli B; Avci-Adali M; Mogtader F; Sharifi F; Çeçen B; Yaşayan G; Braeken D; Alarcin E
    Curr Pharm Des; 2018; 24(45):5437-5457. PubMed ID: 30727878
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling.
    Abaci HE; Shuler ML
    Integr Biol (Camb); 2015 Apr; 7(4):383-91. PubMed ID: 25739725
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel microfluidic microelectrode chip for a significantly enhanced monitoring of NPY-receptor activation in live mode.
    Zitzmann FD; Jahnke HG; Nitschke F; Beck-Sickinger AG; Abel B; Belder D; Robitzki AA
    Lab Chip; 2017 Dec; 17(24):4294-4302. PubMed ID: 29119176
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An on-chip small intestine-liver model for pharmacokinetic studies.
    Kimura H; Ikeda T; Nakayama H; Sakai Y; Fujii T
    J Lab Autom; 2015 Jun; 20(3):265-73. PubMed ID: 25385717
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Organs-on-a-chip: a new tool for drug discovery.
    Polini A; Prodanov L; Bhise NS; Manoharan V; Dokmeci MR; Khademhosseini A
    Expert Opin Drug Discov; 2014 Apr; 9(4):335-52. PubMed ID: 24620821
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Organ-on-a-Chip Systems for Modeling Pathological Tissue Morphogenesis Associated with Fibrosis and Cancer.
    Hayward KL; Kouthouridis S; Zhang B
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2900-2925. PubMed ID: 34275294
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Immunology on chip: promises and opportunities.
    Baratchi S; Khoshmanesh K; Sacristán C; Depoil D; Wlodkowic D; McIntyre P; Mitchell A
    Biotechnol Adv; 2014; 32(2):333-46. PubMed ID: 24275489
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Organs-on-chips: research and commercial perspectives.
    Balijepalli A; Sivaramakrishan V
    Drug Discov Today; 2017 Feb; 22(2):397-403. PubMed ID: 27866008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.