BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28617490)

  • 1. Synthesis and bioactivity of fused- and spiro-β-lactone-lactam systems.
    Josa-Culleré L; Towers C; Willenbrock F; Macaulay VM; Christensen KE; Moloney MG
    Org Biomol Chem; 2017 Jun; 15(25):5373-5379. PubMed ID: 28617490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxazolomycins: natural product lead structures for novel antibacterials by click fragment conjugation.
    Bagwell CL; Moloney MG; Yaqoob M
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2090-4. PubMed ID: 20223659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent Synthesis of Methylene Lactone- and Methylene Lactam-Based Spiro Compounds: Utility of Amido-Functionalized γ-Hydroxylactam as a Precursor for Cytotoxic
    Sengoku T; Shirai A; Takano A; Inuzuka T; Sakamoto M; Takahashi M; Yoda H
    J Org Chem; 2019 Oct; 84(19):12532-12541. PubMed ID: 31525925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omuralide and vibralactone: differences in the proteasome- β-lactone-γ-lactam binding scaffold alter target preferences.
    List A; Zeiler E; Gallastegui N; Rusch M; Hedberg C; Sieber SA; Groll M
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):571-4. PubMed ID: 24285701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of spiro beta-lactone proteasome inhibitors.
    Groll M; Balskus EP; Jacobsen EN
    J Am Chem Soc; 2008 Nov; 130(45):14981-3. PubMed ID: 18928262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lajollamycin, a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic from the marine actinomycete Streptomyces nodosus.
    Manam RR; Teisan S; White DJ; Nicholson B; Grodberg J; Neuteboom ST; Lam KS; Mosca DA; Lloyd GK; Potts BC
    J Nat Prod; 2005 Feb; 68(2):240-3. PubMed ID: 15730252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and antimicrobial activity of highly functionalised novel β-lactam grafted spiropyrrolidines and pyrrolizidines.
    Arumugam N; Periyasami G; Raghunathan R; Kamalraj S; Muthumary J
    Eur J Med Chem; 2011 Feb; 46(2):600-7. PubMed ID: 21177001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoproteasome inhibition and bioactivity of thiasyrbactins.
    Bakas NA; Schultz CR; Yco LP; Roberts CC; Chang CA; Bachmann AS; Pirrung MC
    Bioorg Med Chem; 2018 Jan; 26(2):401-412. PubMed ID: 29269255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cinatrins D and E, and virgaricin B, three novel compounds produced by a fungus, Virgaria boninensis FKI-4958.
    Ishii T; Nonaka K; Sugawara A; Iwatsuki M; Masuma R; Hirose T; Sunazuka T; Ōmura S; Shiomi K
    J Antibiot (Tokyo); 2015 Oct; 68(10):633-7. PubMed ID: 25899122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiro-Lactams as Novel Antimicrobial Agents.
    Alves AJS; Alves NG; Caratão CC; Esteves MIM; Fontinha D; Bártolo I; Soares MIL; Lopes SMM; Prudêncio M; Taveira N; Pinho E Melo TMVD
    Curr Top Med Chem; 2020; 20(2):140-152. PubMed ID: 31702503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimics of pramanicin derived from pyroglutamic acid and their antibacterial activity.
    Tan SW; Chai CL; Moloney MG
    Org Biomol Chem; 2017 Feb; 15(8):1889-1912. PubMed ID: 28169387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verrulactone C with an unprecedented dispiro skeleton, a new inhibitor of Staphylococcus aureus enoyl-ACP reductase, from Penicillium verruculosum F375.
    Kim N; Sohn MJ; Koshino H; Kim EH; Kim WG
    Bioorg Med Chem Lett; 2014 Jan; 24(1):83-6. PubMed ID: 24332629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Enterococcus faecalis biofilm formation by highly active lactones and lactams analogues of rubrolides.
    Pereira UA; Barbosa LC; Maltha CR; Demuner AJ; Masood MA; Pimenta AL
    Eur J Med Chem; 2014 Jul; 82():127-38. PubMed ID: 24880232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, and evaluation of cystargolide-based β-lactones as potent proteasome inhibitors.
    Niroula D; Hallada LP; Le Chapelain C; Ganegamage SK; Dotson D; Rogelj S; Groll M; Tello-Aburto R
    Eur J Med Chem; 2018 Sep; 157():962-977. PubMed ID: 30165344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of mimics of pramanicin from pyroglutamic acid and their antibacterial activity.
    Tan SW; Chai CL; Moloney MG; Thompson AL
    J Org Chem; 2015 Mar; 80(5):2661-75. PubMed ID: 25647715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypanocidal activity of β-lactone-γ-lactam proteasome inhibitors.
    Steverding D; Wang X; Potts BC; Palladino MA
    Planta Med; 2012 Jan; 78(2):131-4. PubMed ID: 22034066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Armeniaspiroles, a new class of antibacterials: Antibacterial activities and total synthesis of 5-chloro-Armeniaspirole A.
    Couturier C; Bauer A; Rey A; Schroif-Dufour C; Broenstrup M
    Bioorg Med Chem Lett; 2012 Oct; 22(19):6292-6. PubMed ID: 22921279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New β-lactam - Tetramic acid hybrids show promising antibacterial activities.
    Cherian PT; Cheramie MN; Marreddy RKR; Fernando DM; Hurdle JG; Lee RE
    Bioorg Med Chem Lett; 2018 Oct; 28(18):3105-3112. PubMed ID: 30097368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and antibacterial activity of C-12 pyrazolinyl spiro ketolides.
    Hu L; Lan P; Song QL; Huang ZJ; Sun PH; Zhuo C; Wang Y; Xiao S; Chen WM
    Eur J Med Chem; 2010 Dec; 45(12):5943-9. PubMed ID: 20970894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Binding Affinity of Novel Syringic Acid Analogues and Critical Determinants of Selectivity as Potent Proteasome Inhibitors.
    Cheemanapalli S; Anuradha CM; Madhusudhana P; Mahesh M; Raghavendra PB; Kumar CS
    Anticancer Agents Med Chem; 2016; 16(11):1496-1510. PubMed ID: 27173965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.