These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28617586)

  • 21. n-Hexane Diluted Electrolyte with Ultralow Density enables Li-S Pouch Battery Toward >400 Wh kg
    Cheng H; Zhang S; Zhang B; Lu Y
    Small; 2023 Mar; 19(9):e2206375. PubMed ID: 36549894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium-Sulfur Battery Cathodes.
    Motoyoshi R; Li S; Tsuzuki S; Ghosh A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45403-45413. PubMed ID: 36174225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aluminum and lithium sulfur batteries: a review of recent progress and future directions.
    Akgenc B; Sarikurt S; Yagmurcukardes M; Ersan F
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33882469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.
    McCloskey BD
    J Phys Chem Lett; 2015 Nov; 6(22):4581-8. PubMed ID: 26722800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries.
    Adelhelm P; Hartmann P; Bender CL; Busche M; Eufinger C; Janek J
    Beilstein J Nanotechnol; 2015; 6():1016-55. PubMed ID: 25977873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries.
    Liu Y; Yang D; Yan W; Huang Q; Zhu Y; Fu L; Wu Y
    iScience; 2019 Sep; 19():316-325. PubMed ID: 31404832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithium-Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density.
    Zhang Y; Zhang X; Silva SRP; Ding B; Zhang P; Shao G
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103879. PubMed ID: 34796682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries.
    Jie Y; Tang C; Xu Y; Guo Y; Li W; Chen Y; Jia H; Zhang J; Yang M; Cao R; Lu Y; Cho J; Jiao S
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202307802. PubMed ID: 37515479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium-Air Batteries with Hybrid Electrolytes.
    He P; Zhang T; Jiang J; Zhou H
    J Phys Chem Lett; 2016 Apr; 7(7):1267-80. PubMed ID: 26977713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode.
    Wang J; Lin F; Jia H; Yang J; Monroe CW; NuLi Y
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10099-104. PubMed ID: 25060633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium-sulfur batteries: progress and prospects.
    Manthiram A; Chung SH; Zu C
    Adv Mater; 2015 Mar; 27(12):1980-2006. PubMed ID: 25688969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current Status and Future Prospects of Metal-Sulfur Batteries.
    Chung SH; Manthiram A
    Adv Mater; 2019 Jul; 31(27):e1901125. PubMed ID: 31081272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revisiting the positive roles of liquid polysulfides in alkali metal-sulfur electrochemistry: from electrolyte additives to active catholyte.
    Chang C; Pu X
    Nanoscale; 2019 Nov; 11(45):21595-21621. PubMed ID: 31697288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.