These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Li Li M; Chen Z; Wu T; Lu J Adv Mater; 2018 Nov; 30(48):e1801190. PubMed ID: 30009540 [TBL] [Abstract][Full Text] [Related]
43. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Yang C; Suo L; Borodin O; Wang F; Sun W; Gao T; Fan X; Hou S; Ma Z; Amine K; Xu K; Wang C Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6197-6202. PubMed ID: 28566497 [TBL] [Abstract][Full Text] [Related]
44. Insight into sulfur reactions in Li-S batteries. Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055 [TBL] [Abstract][Full Text] [Related]
46. Critical Role of Anion Donicity in Li Yang B; Jiang H; Zhou Y; Liang Z; Zhao T; Lu YC ACS Appl Mater Interfaces; 2019 Jul; 11(29):25940-25948. PubMed ID: 31246006 [TBL] [Abstract][Full Text] [Related]
47. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery. Liu S; Li GR; Gao XP ACS Appl Mater Interfaces; 2016 Mar; 8(12):7783-9. PubMed ID: 26981849 [TBL] [Abstract][Full Text] [Related]
48. Comparative life cycle assessment of high performance lithium-sulfur battery cathodes. Lopez S; Akizu-Gardoki O; Lizundia E J Clean Prod; 2021 Feb; 282():124528. PubMed ID: 33041531 [TBL] [Abstract][Full Text] [Related]
49. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium-Sulfur Batteries. Fang R; Chen K; Yin L; Sun Z; Li F; Cheng HM Adv Mater; 2019 Mar; 31(9):e1800863. PubMed ID: 29984484 [TBL] [Abstract][Full Text] [Related]
52. Weakening Li Ji H; Wang Z; Sun Y; Zhou Y; Li S; Zhou J; Qian T; Yan C Adv Mater; 2023 Mar; 35(9):e2208590. PubMed ID: 36583421 [TBL] [Abstract][Full Text] [Related]
53. Bridging the gap between academic research and industrial development in advanced all-solid-state lithium-sulfur batteries. Lee J; Zhao C; Wang C; Chen A; Sun X; Amine K; Xu GL Chem Soc Rev; 2024 May; 53(10):5264-5290. PubMed ID: 38619389 [TBL] [Abstract][Full Text] [Related]
54. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. Gao J; Abruña HD J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082 [TBL] [Abstract][Full Text] [Related]
55. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Fang X; Peng H Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342 [TBL] [Abstract][Full Text] [Related]
56. A review of recent developments in rechargeable lithium-sulfur batteries. Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087 [TBL] [Abstract][Full Text] [Related]
57. Developing Cathode Films for Practical All-Solid-State Lithium-Sulfur Batteries. Ye C; Xu S; Li H; Shan J; Qiao SZ Adv Mater; 2024 Jul; ():e2407738. PubMed ID: 39075816 [TBL] [Abstract][Full Text] [Related]
58. First-principles calculations of oxidation potentials of electrolytes in lithium-sulfur batteries and their variations with changes in environment. Han J; Balbuena PB Phys Chem Chem Phys; 2018 Jul; 20(27):18811-18827. PubMed ID: 29964286 [TBL] [Abstract][Full Text] [Related]
59. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Tan S; Ji YJ; Zhang ZR; Yang Y Chemphyschem; 2014 Jul; 15(10):1956-69. PubMed ID: 25044525 [TBL] [Abstract][Full Text] [Related]