These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28617667)

  • 1. A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication.
    Sego TJ; Kasacheuski U; Hauersperger D; Tovar A; Moldovan NI
    Biofabrication; 2017 Jun; 9(2):024104. PubMed ID: 28617667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofabrication of spheroids fusion-based tumor models: computational simulation of glucose effects.
    Bustamante DJ; Basile EJ; Hildreth BM; Browning NW; Jensen SA; Moldovan L; Petrache HI; Moldovan NI
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33498017
    [No Abstract]   [Full Text] [Related]  

  • 3. Affordable Oxygen Microscopy-Assisted Biofabrication of Multicellular Spheroids.
    Okkelman IA; Vercruysse C; Kondrashina AV; Borisov SM; Dmitriev RI
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35467655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting.
    Moldovan NI; Hibino N; Nakayama K
    Tissue Eng Part B Rev; 2017 Jun; 23(3):237-244. PubMed ID: 27917703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly.
    Parfenov VA; Koudan EV; Bulanova EA; Karalkin PA; DAS Pereira F; Norkin NE; Knyazeva AD; Gryadunova AA; Petrov OF; Vasiliev MM; Myasnikov MI; Chernikov VP; Kasyanov VA; Marchenkov AY; Brakke K; Khesuani YD; Demirci U; Mironov VA
    Biofabrication; 2018 Jun; 10(3):034104. PubMed ID: 29848793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting of a functional vascularized mouse thyroid gland construct.
    Bulanova EA; Koudan EV; Degosserie J; Heymans C; Pereira FD; Parfenov VA; Sun Y; Wang Q; Akhmedova SA; Sviridova IK; Sergeeva NS; Frank GA; Khesuani YD; Pierreux CE; Mironov VA
    Biofabrication; 2017 Aug; 9(3):034105. PubMed ID: 28707625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation.
    Aguilar IN; Olivos DJ; Brinker A; Alvarez MB; Smith LJ; Chu TG; Kacena MA; Wagner DR
    Bioprinting; 2019 Sep; 15():. PubMed ID: 31457109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids.
    Anada T; Fukuda J; Sai Y; Suzuki O
    Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-free Bioprinting of Mesenchymal Stem Cells with the Regenova Printer: Optimization of Printing Parameters.
    Aguilar IN; Smith LJ; Olivos DJ; Chu TG; Kacena MA; Wagner DR
    Bioprinting; 2019 Sep; 15():. PubMed ID: 31457110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications.
    Decarli MC; Amaral R; Santos DPD; Tofani LB; Katayama E; Rezende RA; Silva JVLD; Swiech K; Suazo CAT; Mota C; Moroni L; Moraes ÂM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33592595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenomenological modelling and simulation of cell clusters in 3D cultures.
    González-Valverde I; Semino C; García-Aznar JM
    Comput Biol Med; 2016 Oct; 77():249-60. PubMed ID: 27615191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Adipose Stromal Vascular Fraction Cell-Laden Spheroids Using a Three-Dimensional Bioprinter and Superhydrophobic Surfaces.
    Gettler BC; Zakhari JS; Gandhi PS; Williams SK
    Tissue Eng Part C Methods; 2017 Sep; 23(9):516-524. PubMed ID: 28665236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia combined with spheroid culture improves cartilage specific function in chondrocytes.
    Shi Y; Ma J; Zhang X; Li H; Jiang L; Qin J
    Integr Biol (Camb); 2015 Mar; 7(3):289-97. PubMed ID: 25614382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation.
    Hajdu Z; Mironov V; Mehesz AN; Norris RA; Markwald RR; Visconti RP
    J Tissue Eng Regen Med; 2010 Dec; 4(8):659-64. PubMed ID: 20603872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations.
    Sun Y; Yang X; Wang Q
    Biofabrication; 2014 Mar; 6(1):015008. PubMed ID: 24429898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modelling reveals cellular dynamics within tumour spheroids.
    Bull JA; Mech F; Quaiser T; Waters SL; Byrne HM
    PLoS Comput Biol; 2020 Aug; 16(8):e1007961. PubMed ID: 32810174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale model for heterogeneous tumor spheroid in vitro.
    Chen Z; Zou Y
    Math Biosci Eng; 2018 Apr; 15(2):361-392. PubMed ID: 29161840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.