BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28617850)

  • 1. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE.
    Ke M; Yuan Y; Jiang X; Yan N; Gong H
    PLoS Comput Biol; 2017 Jun; 13(6):e1005603. PubMed ID: 28617850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.
    Park MS
    PLoS One; 2015; 10(4):e0125361. PubMed ID: 25919356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
    Wisedchaisri G; Park MS; Iadanza MG; Zheng H; Gonen T
    Nat Commun; 2014 Aug; 5():4521. PubMed ID: 25088546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
    Sun L; Zeng X; Yan C; Sun X; Gong X; Rao Y; Yan N
    Nature; 2012 Oct; 490(7420):361-6. PubMed ID: 23075985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the human glucose transporter GLUT1.
    Deng D; Xu C; Sun P; Wu J; Yan C; Hu M; Yan N
    Nature; 2014 Jun; 510(7503):121-5. PubMed ID: 24847886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter.
    Jia R; Martens C; Shekhar M; Pant S; Pellowe GA; Lau AM; Findlay HE; Harris NJ; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2020 Dec; 11(1):6162. PubMed ID: 33268777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity and path of binding xylopyranose unto E. coli xylose permease.
    Wambo TO; Chen LY; Phelix C; Perry G
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):202-206. PubMed ID: 29032199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-mediated crystallization of the xylose transporter XylE from Escherichia coli in three different crystal forms.
    Quistgaard EM; Löw C; Moberg P; Nordlund P
    J Struct Biol; 2013 Nov; 184(2):375-8. PubMed ID: 24060988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function.
    Raja M; Kinne RK
    Biophys Chem; 2015; 200-201():9-17. PubMed ID: 25863194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Study of Human Glucose Transport Mediated by GLUT1.
    Fu X; Zhang G; Liu R; Wei J; Zhang-Negrerie D; Jian X; Gao Q
    J Chem Inf Model; 2016 Mar; 56(3):517-26. PubMed ID: 26821218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of the mammalian fructose transporter GLUT5.
    Nomura N; Verdon G; Kang HJ; Shimamura T; Nomura Y; Sonoda Y; Hussien SA; Qureshi AA; Coincon M; Sato Y; Abe H; Nakada-Nakura Y; Hino T; Arakawa T; Kusano-Arai O; Iwanari H; Murata T; Kobayashi T; Hamakubo T; Kasahara M; Iwata S; Drew D
    Nature; 2015 Oct; 526(7573):397-401. PubMed ID: 26416735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation of Glu(135) Facilitates the Outward-to-Inward Structural Transition of Fucose Transporter.
    Liu Y; Ke M; Gong H
    Biophys J; 2015 Aug; 109(3):542-51. PubMed ID: 26244736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.
    Quistgaard EM; Löw C; Moberg P; Trésaugues L; Nordlund P
    Nat Struct Mol Biol; 2013 Jun; 20(6):766-8. PubMed ID: 23624861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12.
    Davis EO; Henderson PJ
    J Biol Chem; 1987 Oct; 262(29):13928-32. PubMed ID: 2820984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved movement of TMS11 between occluded conformations of LacY and XylE of the major facilitator superfamily suggests a similar hinge-like mechanism.
    Västermark Å; Driker A; Li J; Saier MH
    Proteins; 2015 Apr; 83(4):735-45. PubMed ID: 25586173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional architecture of MFS D-glucose transporters.
    Madej MG; Sun L; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):E719-27. PubMed ID: 24550316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of sugar binding kinetics of the E. coli sugar/H
    Bazzone A; Tesmer L; Kurt D; Kaback HR; Fendler K; Madej MG
    J Biol Chem; 2022 Feb; 298(2):101505. PubMed ID: 34929170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion.
    Cunningham P; Naftalin RJ
    J Membr Biol; 2014 Nov; 247(11):1161-79. PubMed ID: 25163893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct protein-lipid interactions shape the conformational landscape of secondary transporters.
    Martens C; Shekhar M; Borysik AJ; Lau AM; Reading E; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2018 Oct; 9(1):4151. PubMed ID: 30297844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational transitions of uracil transporter UraA from Escherichia coli: a molecular simulation study.
    Yang L; Yang L; Yu H; Liu L; Zhao X; Huang X
    J Biomol Struct Dyn; 2018 Oct; 36(13):3398-3410. PubMed ID: 29072107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.