BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28617921)

  • 1. Optical coherence tomography angiography-based capillary velocimetry.
    Wang RK; Zhang Q; Li Y; Song S
    J Biomed Opt; 2017 Jun; 22(6):66008. PubMed ID: 28617921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry.
    Li Y; Wei W; Wang RK
    Sci Rep; 2018 Mar; 8(1):4107. PubMed ID: 29515156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography.
    Li Y; Choi WJ; Wei W; Song S; Zhang Q; Liu J; Wang RK
    Neurobiol Aging; 2018 Oct; 70():148-159. PubMed ID: 30007164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral capillary velocimetry based on temporal OCT speckle contrast.
    Choi WJ; Li Y; Qin W; Wang RK
    Biomed Opt Express; 2016 Dec; 7(12):4859-4873. PubMed ID: 28018711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.
    Tang J; Erdener SE; Fu B; Boas DA
    Opt Lett; 2017 Oct; 42(19):3976-3979. PubMed ID: 28957175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo volumetric blood flow imaging using optical microangiography at capillary level resolution.
    Wang RK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():804. PubMed ID: 19162778
    [No Abstract]   [Full Text] [Related]  

  • 7. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo.
    Wang RK; An L
    Opt Express; 2009 May; 17(11):8926-40. PubMed ID: 19466142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography.
    Shin P; Choi W; Joo J; Oh WY
    J Cereb Blood Flow Metab; 2019 Oct; 39(10):1983-1994. PubMed ID: 29757059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-heterogeneity of flow in a mouse model of chronic cerebral hypoperfusion revealed by longitudinal Doppler optical coherence tomography and angiography.
    Srinivasan VJ; Yu E; Radhakrishnan H; Can A; Climov M; Leahy C; Ayata C; Eikermann-Haerter K
    J Cereb Blood Flow Metab; 2015 Oct; 35(10):1552-60. PubMed ID: 26243708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocorrelation analysis-based OCT velocimetry for axial blood flow velocity imaging of the cerebral capillary network.
    Guo X; Ren G; Tang J
    Opt Lett; 2023 Jul; 48(13):3599-3602. PubMed ID: 37390190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of optical coherence tomography angiography with a microfluidic chip.
    Su JP; Chandwani R; Gao SS; Pechauer AD; Zhang M; Wang J; Jia Y; Huang D; Liu G
    J Biomed Opt; 2016 Aug; 21(8):86015. PubMed ID: 27557344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OCT methods for capillary velocimetry.
    Srinivasan VJ; Radhakrishnan H; Lo EH; Mandeville ET; Jiang JY; Barry S; Cable AE
    Biomed Opt Express; 2012 Mar; 3(3):612-29. PubMed ID: 22435106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells.
    Erdener ŞE; Tang J; Sajjadi A; Kılıç K; Kura S; Schaffer CB; Boas DA
    J Cereb Blood Flow Metab; 2019 May; 39(5):886-900. PubMed ID: 29168661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical microvascular blood flow velocity mapping by combining dynamic light scattering optical coherence tomography and two-photon microscopy.
    Pian Q; Alfadhel M; Tang J; Lee GV; Li B; Fu B; Ayata Y; Yaseen MA; Boas DA; Secomb TW; Sakadzic S
    J Biomed Opt; 2023 Jul; 28(7):076003. PubMed ID: 37484973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical analysis of motion contrast in optical coherence tomography angiography.
    Cheng Y; Guo L; Pan C; Lu T; Hong T; Ding Z; Li P
    J Biomed Opt; 2015 Nov; 20(11):116004. PubMed ID: 26524681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY SHOWS DEEP CAPILLARY PLEXUS HYPOPERFUSION IN INCOMPLETE CENTRAL RETINAL ARTERY OCCLUSION.
    Philippakis E; Dupas B; Bonnin P; Hage R; Gaudric A; Tadayoni R
    Retin Cases Brief Rep; 2015; 9(4):333-8. PubMed ID: 26355822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo.
    Yousefi S; Qin J; Wang RK
    Biomed Opt Express; 2013 Jul; 4(7):1214-28. PubMed ID: 23847744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT.
    Zhi Z; Cepurna W; Johnson E; Jayaram H; Morrison J; Wang RK
    Microvasc Res; 2015 Sep; 101():86-95. PubMed ID: 26186381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.