These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 28618000)
1. In vivo analysis of synaptic activity in cerebellar nuclei neurons unravels the efficacy of excitatory inputs. Yarden-Rabinowitz Y; Yarom Y J Physiol; 2017 Sep; 595(17):5945-5963. PubMed ID: 28618000 [TBL] [Abstract][Full Text] [Related]
2. Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice. Najac M; Raman IM J Physiol; 2017 Nov; 595(21):6703-6718. PubMed ID: 28795396 [TBL] [Abstract][Full Text] [Related]
3. Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies. Lu H; Yang B; Jaeger D Front Neural Circuits; 2016; 10():21. PubMed ID: 27047344 [TBL] [Abstract][Full Text] [Related]
4. Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials. Garden DL; Rinaldi A; Nolan MF J Physiol; 2017 Feb; 595(4):1239-1251. PubMed ID: 27767209 [TBL] [Abstract][Full Text] [Related]
5. Facilitation of mossy fibre-driven spiking in the cerebellar nuclei by the synchrony of inhibition. Wu Y; Raman IM J Physiol; 2017 Aug; 595(15):5245-5264. PubMed ID: 28513836 [TBL] [Abstract][Full Text] [Related]
6. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig. Llinás R; Mühlethaler M J Physiol; 1988 Oct; 404():215-40. PubMed ID: 3253432 [TBL] [Abstract][Full Text] [Related]
7. Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus. Özcan OO; Wang X; Binda F; Dorgans K; De Zeeuw CI; Gao Z; Aertsen A; Kumar A; Isope P J Neurosci; 2020 Jan; 40(1):159-170. PubMed ID: 31694963 [TBL] [Abstract][Full Text] [Related]
8. Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. Oldenbeuving AW; Eisenman LM; De Zeeuw CI; Ruigrok TJ Eur J Neurosci; 1999 Nov; 11(11):3809-22. PubMed ID: 10583470 [TBL] [Abstract][Full Text] [Related]
9. The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. Gauck V; Jaeger D J Neurosci; 2003 Sep; 23(22):8109-18. PubMed ID: 12954873 [TBL] [Abstract][Full Text] [Related]
10. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies. Jaeger D Cerebellum; 2011 Dec; 10(4):659-66. PubMed ID: 21259124 [TBL] [Abstract][Full Text] [Related]
11. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. Llinás R; Mühlethaler M J Physiol; 1988 Oct; 404():241-58. PubMed ID: 2855348 [TBL] [Abstract][Full Text] [Related]
12. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. Blenkinsop TA; Lang EJ J Neurosci; 2011 Oct; 31(41):14708-20. PubMed ID: 21994387 [TBL] [Abstract][Full Text] [Related]
13. Temporal dynamics of the cerebello-cortical convergence in ventro-lateral motor thalamus. Schäfer CB; Gao Z; De Zeeuw CI; Hoebeek FE J Physiol; 2021 Apr; 599(7):2055-2073. PubMed ID: 33492688 [TBL] [Abstract][Full Text] [Related]
14. Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit. Gjoni E; Zenke F; Bouhours B; Schneggenburger R J Physiol; 2018 Oct; 596(20):4945-4967. PubMed ID: 30051910 [TBL] [Abstract][Full Text] [Related]
15. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Zheng N; Raman IM Cerebellum; 2010 Mar; 9(1):56-66. PubMed ID: 19847585 [TBL] [Abstract][Full Text] [Related]
16. The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation. McLaughlin C; Clements J; Oprişoreanu AM; Sylantyev S J Physiol; 2019 May; 597(9):2457-2481. PubMed ID: 30875431 [TBL] [Abstract][Full Text] [Related]
17. How inhibitory and excitatory inputs gate output of the inferior olive. Loyola S; Hoogland TM; Hoedemaker H; Romano V; Negrello M; De Zeeuw CI Elife; 2023 Aug; 12():. PubMed ID: 37526175 [TBL] [Abstract][Full Text] [Related]
18. Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway. Beitz AJ; Saxon D J Neurocytol; 2004 Jan; 33(1):49-74. PubMed ID: 15173632 [TBL] [Abstract][Full Text] [Related]
19. Cerebellar output regulation by the climbing and mossy fibers with and without the inferior olive. Bardin JM; Batini C; Billard JM; Buisseret-Delmas C; Conrath-Verrier M; Corvaja N J Comp Neurol; 1983 Feb; 213(4):464-77. PubMed ID: 6300201 [TBL] [Abstract][Full Text] [Related]
20. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Shinoda Y; Sugihara I; Wu HS; Sugiuchi Y Prog Brain Res; 2000; 124():173-86. PubMed ID: 10943124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]