BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28618000)

  • 1. In vivo analysis of synaptic activity in cerebellar nuclei neurons unravels the efficacy of excitatory inputs.
    Yarden-Rabinowitz Y; Yarom Y
    J Physiol; 2017 Sep; 595(17):5945-5963. PubMed ID: 28618000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice.
    Najac M; Raman IM
    J Physiol; 2017 Nov; 595(21):6703-6718. PubMed ID: 28795396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies.
    Lu H; Yang B; Jaeger D
    Front Neural Circuits; 2016; 10():21. PubMed ID: 27047344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials.
    Garden DL; Rinaldi A; Nolan MF
    J Physiol; 2017 Feb; 595(4):1239-1251. PubMed ID: 27767209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of mossy fibre-driven spiking in the cerebellar nuclei by the synchrony of inhibition.
    Wu Y; Raman IM
    J Physiol; 2017 Aug; 595(15):5245-5264. PubMed ID: 28513836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig.
    Llinás R; Mühlethaler M
    J Physiol; 1988 Oct; 404():215-40. PubMed ID: 3253432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus.
    Özcan OO; Wang X; Binda F; Dorgans K; De Zeeuw CI; Gao Z; Aertsen A; Kumar A; Isope P
    J Neurosci; 2020 Jan; 40(1):159-170. PubMed ID: 31694963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice.
    Oldenbeuving AW; Eisenman LM; De Zeeuw CI; Ruigrok TJ
    Eur J Neurosci; 1999 Nov; 11(11):3809-22. PubMed ID: 10583470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei.
    Gauck V; Jaeger D
    J Neurosci; 2003 Sep; 23(22):8109-18. PubMed ID: 12954873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies.
    Jaeger D
    Cerebellum; 2011 Dec; 10(4):659-66. PubMed ID: 21259124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation.
    Llinás R; Mühlethaler M
    J Physiol; 1988 Oct; 404():241-58. PubMed ID: 2855348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity.
    Blenkinsop TA; Lang EJ
    J Neurosci; 2011 Oct; 31(41):14708-20. PubMed ID: 21994387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal dynamics of the cerebello-cortical convergence in ventro-lateral motor thalamus.
    Schäfer CB; Gao Z; De Zeeuw CI; Hoebeek FE
    J Physiol; 2021 Apr; 599(7):2055-2073. PubMed ID: 33492688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit.
    Gjoni E; Zenke F; Bouhours B; Schneggenburger R
    J Physiol; 2018 Oct; 596(20):4945-4967. PubMed ID: 30051910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei.
    Zheng N; Raman IM
    Cerebellum; 2010 Mar; 9(1):56-66. PubMed ID: 19847585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation.
    McLaughlin C; Clements J; Oprişoreanu AM; Sylantyev S
    J Physiol; 2019 May; 597(9):2457-2481. PubMed ID: 30875431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How inhibitory and excitatory inputs gate output of the inferior olive.
    Loyola S; Hoogland TM; Hoedemaker H; Romano V; Negrello M; De Zeeuw CI
    Elife; 2023 Aug; 12():. PubMed ID: 37526175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway.
    Beitz AJ; Saxon D
    J Neurocytol; 2004 Jan; 33(1):49-74. PubMed ID: 15173632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar output regulation by the climbing and mossy fibers with and without the inferior olive.
    Bardin JM; Batini C; Billard JM; Buisseret-Delmas C; Conrath-Verrier M; Corvaja N
    J Comp Neurol; 1983 Feb; 213(4):464-77. PubMed ID: 6300201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex.
    Shinoda Y; Sugihara I; Wu HS; Sugiuchi Y
    Prog Brain Res; 2000; 124():173-86. PubMed ID: 10943124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.