These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 28618050)
1. Different Porosities of Chitosan Can Influence the Osteogenic Differentiation Potential of Stem Cells. Ardeshirylajimi A; Delgoshaie M; Mirzaei S; Khojasteh A J Cell Biochem; 2018 Jan; 119(1):625-633. PubMed ID: 28618050 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro. Zhang Z; Li F; Tian H; Guan K; Zhao G; Shan J; Ren D Chin Med J (Engl); 2014; 127(2):314-21. PubMed ID: 24438622 [TBL] [Abstract][Full Text] [Related]
3. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. Gu Y; Bai Y; Zhang D J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Farea M; Husein A; Halim AS; Abdullah NA; Mokhtar KI; Lim CK; Berahim Z; Mokhtar K Arch Oral Biol; 2014 Dec; 59(12):1400-11. PubMed ID: 25222336 [TBL] [Abstract][Full Text] [Related]
6. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827 [TBL] [Abstract][Full Text] [Related]
7. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells]. Xu W; Lu H; Ye J; Yang W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Printed Titanium Scaffolds Enhance Osteogenic Differentiation and New Bone Formation by Cultured Adipose Tissue-Derived Stem Cells Through the IGF-1R/AKT/Mammalian Target of Rapamycin Complex 1 (mTORC1) Pathway. Zhou X; Zhang D; Wang M; Zhang D; Xu Y Med Sci Monit; 2019 Oct; 25():8043-8054. PubMed ID: 31655847 [TBL] [Abstract][Full Text] [Related]
10. Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds. Rath SN; Nooeaid P; Arkudas A; Beier JP; Strobel LA; Brandl A; Roether JA; Horch RE; Boccaccini AR; Kneser U J Tissue Eng Regen Med; 2016 Oct; 10(10):E497-E509. PubMed ID: 24357645 [TBL] [Abstract][Full Text] [Related]
11. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
12. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. Li J; Yang B; Qian Y; Wang Q; Han R; Hao T; Shu Y; Zhang Y; Yao F; Wang C J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1498-510. PubMed ID: 25449538 [TBL] [Abstract][Full Text] [Related]
13. Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds. Rozila I; Azari P; Munirah S; Wan Safwani WK; Gan SN; Nur Azurah AG; Jahendran J; Pingguan-Murphy B; Chua KH J Biomed Mater Res A; 2016 Feb; 104(2):377-87. PubMed ID: 26414782 [TBL] [Abstract][Full Text] [Related]
14. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. Zhu Y; Liu T; Song K; Jiang B; Ma X; Cui Z J Mater Sci Mater Med; 2009 Mar; 20(3):799-808. PubMed ID: 19020954 [TBL] [Abstract][Full Text] [Related]
15. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. Siddiqui N; Pramanik K; Jabbari E Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():76-83. PubMed ID: 26046270 [TBL] [Abstract][Full Text] [Related]
16. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. Scioli MG; Bielli A; Gentile P; Cervelli V; Orlandi A J Tissue Eng Regen Med; 2017 Aug; 11(8):2398-2410. PubMed ID: 27074878 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable Gelatin Methacrylate Gel as a Potential Scaffold for Bone Tissue Engineering of Canine Adipose-Derived Stem Cells. Aparnathi MK; Patel JS J Stem Cells; 2016; 11(3):111-119. PubMed ID: 28296875 [TBL] [Abstract][Full Text] [Related]
18. Preparation and Characterization of a Chitosan/Gelatin/Extracellular Matrix Scaffold and Its Application in Tissue Engineering. Wang X; Yu T; Chen G; Zou J; Li J; Yan J Tissue Eng Part C Methods; 2017 Mar; 23(3):169-179. PubMed ID: 28142371 [TBL] [Abstract][Full Text] [Related]
19. Genipin-cross-linked type II collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposus-like cells. Zhou X; Tao Y; Chen E; Wang J; Fang W; Zhao T; Liang C; Li F; Chen Q J Biomed Mater Res A; 2018 May; 106(5):1258-1268. PubMed ID: 29314724 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. Arjmand M; Ardeshirylajimi A; Maghsoudi H; Azadian E J Cell Physiol; 2018 Feb; 233(2):1061-1070. PubMed ID: 28419435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]