These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1196 related articles for article (PubMed ID: 28618188)
1. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
2. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. Cribbes S; Kessel S; McMenemy S; Qiu J; Chan LL SLAS Discov; 2017 Jun; 22(5):547-557. PubMed ID: 28346096 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Qiu J; Chan LL SLAS Discov; 2018 Feb; 23(2):202-210. PubMed ID: 28915356 [TBL] [Abstract][Full Text] [Related]
4. High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry. Kessel S; Cribbes S; Déry O; Kuksin D; Sincoff E; Qiu J; Chan LL SLAS Technol; 2017 Aug; 22(4):454-465. PubMed ID: 27272155 [TBL] [Abstract][Full Text] [Related]
5. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664 [TBL] [Abstract][Full Text] [Related]
6. Automated Assessment of Cancer Drug Efficacy On Breast Tumor Spheroids in Aggrewell™400 Plates Using Image Cytometry. Mukundan S; Bell J; Teryek M; Hernandez C; Love AC; Parekkadan B; Chan LL J Fluoresc; 2022 Mar; 32(2):521-531. PubMed ID: 34989923 [TBL] [Abstract][Full Text] [Related]
7. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening. Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574 [TBL] [Abstract][Full Text] [Related]
8. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery. Meier-Hubberten JC; Sanderson MP Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022 [TBL] [Abstract][Full Text] [Related]
9. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Sirenko O; Mitlo T; Hesley J; Luke S; Owens W; Cromwell EF Assay Drug Dev Technol; 2015 Sep; 13(7):402-14. PubMed ID: 26317884 [TBL] [Abstract][Full Text] [Related]
10. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids. Senkowski W; Jarvius M; Rubin J; Lengqvist J; Gustafsson MG; Nygren P; Kultima K; Larsson R; Fryknäs M Cell Chem Biol; 2016 Nov; 23(11):1428-1438. PubMed ID: 27984028 [TBL] [Abstract][Full Text] [Related]
11. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction. Li S; Yang K; Chen X; Zhu X; Zhou H; Li P; Chen Y; Jiang Y; Li T; Qin X; Yang H; Wu C; Ji B; You F; Liu Y Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34407511 [TBL] [Abstract][Full Text] [Related]
13. The Generation of Three-Dimensional Head and Neck Cancer Models for Drug Discovery in 384-Well Ultra-Low Attachment Microplates. Close DA; Camarco DP; Shan F; Kochanek SJ; Johnston PA Methods Mol Biol; 2018; 1683():355-369. PubMed ID: 29082502 [TBL] [Abstract][Full Text] [Related]
14. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. Godugu C; Patel AR; Desai U; Andey T; Sams A; Singh M PLoS One; 2013; 8(1):e53708. PubMed ID: 23349734 [TBL] [Abstract][Full Text] [Related]
15. The Resazurin Reduction Assay Can Distinguish Cytotoxic from Cytostatic Compounds in Spheroid Screening Assays. Walzl A; Unger C; Kramer N; Unterleuthner D; Scherzer M; Hengstschläger M; Schwanzer-Pfeiffer D; Dolznig H J Biomol Screen; 2014 Aug; 19(7):1047-59. PubMed ID: 24758920 [TBL] [Abstract][Full Text] [Related]
16. Effects of α-Mangostin on Viability, Growth and Cohesion of Multicellular Spheroids Derived from Human Breast Cancer Cell Lines. Scolamiero G; Pazzini C; Bonafè F; Guarnieri C; Muscari C Int J Med Sci; 2018; 15(1):23-30. PubMed ID: 29333084 [No Abstract] [Full Text] [Related]
17. Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays. Lal-Nag M; McGee L; Titus SA; Brimacombe K; Michael S; Sittampalam G; Ferrer M SLAS Discov; 2017 Jun; 22(5):537-546. PubMed ID: 28298153 [TBL] [Abstract][Full Text] [Related]
18. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions. Fu J; Fernandez D; Ferrer M; Titus SA; Buehler E; Lal-Nag MA SLAS Discov; 2017 Jun; 22(5):525-536. PubMed ID: 28277887 [TBL] [Abstract][Full Text] [Related]
19. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Raghavan S; Ward MR; Rowley KR; Wold RM; Takayama S; Buckanovich RJ; Mehta G Gynecol Oncol; 2015 Jul; 138(1):181-9. PubMed ID: 25913133 [TBL] [Abstract][Full Text] [Related]
20. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Thoma CR; Zimmermann M; Agarkova I; Kelm JM; Krek W Adv Drug Deliv Rev; 2014 Apr; 69-70():29-41. PubMed ID: 24636868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]