These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 28618276)
1. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chatterjee S; Deb U; Datta S; Walther C; Gupta DK Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276 [TBL] [Abstract][Full Text] [Related]
2. Synergetic toxic effect of an explosive material mixture in soil. Panz K; Miksch K; Sójka T Bull Environ Contam Toxicol; 2013 Nov; 91(5):555-9. PubMed ID: 24005241 [TBL] [Abstract][Full Text] [Related]
3. A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. Aamir Khan M; Sharma A; Yadav S; Celin SM; Sharma S Chemosphere; 2022 May; 294():133641. PubMed ID: 35077733 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. Panz K; Miksch K J Environ Manage; 2012 Dec; 113():85-92. PubMed ID: 22996005 [TBL] [Abstract][Full Text] [Related]
5. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions. Wang C; Fuller ME; Schaefer C; Caplan JL; Jin Y J Hazard Mater; 2012 May; 217-218():187-93. PubMed ID: 22480704 [TBL] [Abstract][Full Text] [Related]
6. Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. Park J; Comfort SD; Shea PJ; Machacek TA J Environ Qual; 2004; 33(4):1305-13. PubMed ID: 15254112 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Fuller ME; Hatzinger PB; Rungmakol D; Schuster RL; Steffan RJ Environ Toxicol Chem; 2004 Feb; 23(2):313-24. PubMed ID: 14982377 [TBL] [Abstract][Full Text] [Related]
8. Degradation of explosives-related compounds using nickel catalysts. Fuller ME; Schaefer CE; Lowey JM Chemosphere; 2007 Mar; 67(3):419-27. PubMed ID: 17109928 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Adrian NR; Arnett CM Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047 [TBL] [Abstract][Full Text] [Related]
10. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions. Boparai HK; Comfort SD; Satapanajaru T; Szecsody JE; Grossl PR; Shea PJ Chemosphere; 2010 May; 79(8):865-72. PubMed ID: 20226494 [TBL] [Abstract][Full Text] [Related]
11. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils. Sharma P; Mayes MA; Tang G Chemosphere; 2013 Aug; 92(8):993-1000. PubMed ID: 23602657 [TBL] [Abstract][Full Text] [Related]
12. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils. Douglas TA; Walsh ME; McGrath CJ; Weiss CA J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785 [TBL] [Abstract][Full Text] [Related]
13. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions. Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362 [TBL] [Abstract][Full Text] [Related]
14. Sequential biodegradation of TNT, RDX and HMX in a mixture. Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165 [TBL] [Abstract][Full Text] [Related]
15. Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Lynch JC; Brannon JM; Delfino JJ Chemosphere; 2002 May; 47(7):725-34. PubMed ID: 12079068 [TBL] [Abstract][Full Text] [Related]
16. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Cubello F; Polyakov V; Meding SM; Kadoya W; Beal S; Dontsova K Chemosphere; 2024 Feb; 350():141023. PubMed ID: 38141674 [TBL] [Abstract][Full Text] [Related]
17. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. Yoon JM; Van Aken B; Schnoor JL Int J Phytoremediation; 2006; 8(1):81-94. PubMed ID: 16615309 [TBL] [Abstract][Full Text] [Related]
18. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments. Boparai HK; Comfort SD; Shea PJ; Szecsody JE Chemosphere; 2008 Mar; 71(5):933-41. PubMed ID: 18086486 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Van Aken B; Yoon JM; Schnoor JL Appl Environ Microbiol; 2004 Jan; 70(1):508-17. PubMed ID: 14711682 [TBL] [Abstract][Full Text] [Related]
20. Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Larson SL; Martin WA; Escalon BL; Thompson M Environ Sci Technol; 2008 Feb; 42(3):786-92. PubMed ID: 18323103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]