BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28618301)

  • 1. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures.
    Zhou B; Sit AJ; Zhang X
    Ultrasonics; 2017 Nov; 81():86-92. PubMed ID: 28618301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraocular Pressure-dependent Corneal Elasticity Measurement Using High-frequency Ultrasound.
    Osapoetra LO; Watson DM; McAleavey SA
    Ultrason Imaging; 2019 Sep; 41(5):251-270. PubMed ID: 31271117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Noninvasive Measurement of Young's Modulus of Elasticity in Human Eyes: A Feasibility Study.
    Sit AJ; Lin SC; Kazemi A; McLaren JW; Pruet CM; Zhang X
    J Glaucoma; 2017 Nov; 26(11):967-973. PubMed ID: 28858155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
    Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ
    J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model.
    Weng CC; Chen PY; Chou D; Shih CC; Huang CC
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2637-2644. PubMed ID: 33306463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of corneal tangent modulus using ultrasound indentation.
    Wang LK; Huang YP; Tian L; Kee CS; Zheng YP
    Ultrasonics; 2016 Sep; 71():20-28. PubMed ID: 27262352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of pleural fluid layers on lung surface wave speed measurement: Experimental and numerical studies on a sponge lung phantom.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2019 Jan; 89():13-18. PubMed ID: 30236977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.
    Zhang X; Osborn T; Kalra S
    Ultrasonics; 2016 Sep; 71():183-188. PubMed ID: 27392204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence elastography measures the biomechanical properties of the
    Nair A; Zvietcovich F; Singh M; Weikert MP; Aglyamov SR; Larin KV
    J Biomed Opt; 2024 Jan; 29(1):016002. PubMed ID: 38223300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography.
    Li J; Han Z; Singh M; Twa MD; Larin KV
    J Biomed Opt; 2014 Nov; 19(11):110502. PubMed ID: 25408955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Corneal Wave Speed and Ocular Rigidity in Normal and Glaucomatous Eyes.
    Kazemi A; Zhou B; Zhang X; Sit AJ
    J Glaucoma; 2021 Oct; 30(10):932-940. PubMed ID: 34127628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging.
    Nguyen TM; Aubry JF; Fink M; Bercoff J; Tanter M
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7545-52. PubMed ID: 25352119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye.
    Qian X; Li R; Lu G; Jiang L; Kang H; Kirk Shung K; Humayun MS; Zhou Q
    Ultrasonics; 2021 Feb; 110():106263. PubMed ID: 33065466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound vibro-elastography for assessing mechanical properties of porcine reproductive tissues in an ex vivo model.
    Zhou B; Shao J; Kisby CK; Zhang X
    Clin Biomech (Bristol, Avon); 2020 Aug; 78():105093. PubMed ID: 32619871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.