These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28618334)

  • 1. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.
    Korayem MH; Hoshiar AK; Ghofrani M
    J Mol Graph Model; 2017 Aug; 75():266-276. PubMed ID: 28618334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic guided virtual reality simulation for targeted drug delivery using nano-containers manipulation.
    Hassan S; Shah M; Yoon SC; Ullah I; Kim MO; Yoon J
    J Biomed Nanotechnol; 2013 Jul; 9(7):1190-4. PubMed ID: 23909133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface.
    Leinen P; Green MF; Esat T; Wagner C; Tautz FS; Temirov R
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network sliding mode controller of atomic force microscope-based manipulation with different cantilever probes.
    Korayem MH; Esmaeilzadehha S
    Microsc Res Tech; 2019 Jul; 82(7):993-1003. PubMed ID: 30839142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy.
    Korayem MH; Badkoobeh Hezaveh H; Taheri M
    Microsc Microanal; 2014 Dec; 20(6):1692-707. PubMed ID: 25289582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect.
    Korayem MH; Mahmoodi Z; Mohammadi M
    J Theor Biol; 2018 Jan; 436():105-119. PubMed ID: 28941867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly.
    Xie H; Haliyo DS; Régnier S
    Nanotechnology; 2009 May; 20(21):215301. PubMed ID: 19423927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the manipulation of C60 on the Si001 surface performed with NC-AFM.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2009 Apr; 20(13):135706. PubMed ID: 19420515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation.
    Korayem MH; Saraie MB; Saraee MB
    Ultramicroscopy; 2017 Apr; 175():9-24. PubMed ID: 28110179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures.
    Kim S; Shafiei F; Ratchford D; Li X
    Nanotechnology; 2011 Mar; 22(11):115301. PubMed ID: 21301077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation.
    Wang Y; Guo S; Tamiya T; Hirata H; Ishihara H; Yin X
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27538939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual Reality and Simulation in Neurosurgical Training.
    Bernardo A
    World Neurosurg; 2017 Oct; 106():1015-1029. PubMed ID: 28985656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Virtual Reality Implementation of Tourist Attractions Based on the Deep Belief Neural Network.
    Song F
    Comput Intell Neurosci; 2021; 2021():9004797. PubMed ID: 34552628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Discrepancy between surgeon's binocular parallax perception and manipulation in the neurosurgical operation].
    Kato A; Hirata M; Yoshimine T; Tamura S; Kishino F; Hayakawa T
    No Shinkei Geka; 1998 Jun; 26(6):517-22. PubMed ID: 9635304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.
    Cipresso P; Riva G
    Stud Health Technol Inform; 2015; 219():177-81. PubMed ID: 26799903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-creation environment with cloud virtual reality and real-time artificial intelligence toward the design of molecular robots.
    Konagaya A; Gutmann G; Zhang Y
    J Integr Bioinform; 2023 Mar; 20(1):. PubMed ID: 36194394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical, Modular and Articulated Interface for Interactive Molecular Manipulation.
    Vincke B; Ghaoui MA; Férey N; Martinez X
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32967319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital atomic force microscope moiré method.
    Liu CM; Chen LW
    Ultramicroscopy; 2004 Nov; 101(2-4):173-81. PubMed ID: 15450663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.