These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28618506)

  • 1. Phase diagram and aggregation dynamics of a monolayer of paramagnetic colloids.
    Pham AT; Zhuang Y; Detwiler P; Socolar JES; Charbonneau P; Yellen BB
    Phys Rev E; 2017 May; 95(5-1):052607. PubMed ID: 28618506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern formation and coarse-graining in two-dimensional colloids driven by multiaxial magnetic fields.
    Müller K; Osterman N; Babič D; Likos CN; Dobnikar J; Nikoubashman A
    Langmuir; 2014 May; 30(18):5088-96. PubMed ID: 24742096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion Interactions at Interfaces Induced by Ferromagnetic Colloidal Polymers.
    Cerdà JJ; Batle J; Bona-Casas C; Massó J; Sintes T
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of perpendicular external magnetic field on microstructures of monolayer composed of ferromagnetic particles: analysis by means of quasi-two-dimensional Monte Carlo simulation.
    Aoshima M; Satoh A; Chantrell RW
    J Colloid Interface Sci; 2008 Jul; 323(1):158-68. PubMed ID: 18452934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions.
    Yakovlev EV; Kryuchkov NP; Korsakova SA; Dmitryuk NA; Ovcharov PV; Andronic MM; Rodionov IA; Sapelkin AV; Yurchenko SO
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):564-574. PubMed ID: 34626996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of two-dimensional magnetic colloids in tilted external magnetic fields.
    Froltsov VA; Blaak R; Likos CN; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061406. PubMed ID: 14754203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of bidisperse repulsive colloids in two-dimensional space: a study of model systems constructed at the air-water interface.
    Hur J; Mahynski NA; Won YY
    Langmuir; 2010 Jul; 26(14):11737-49. PubMed ID: 20527939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional melting of colloids with long-range attractive interactions.
    Du D; Doxastakis M; Hilou E; Biswal SL
    Soft Matter; 2017 Feb; 13(8):1548-1553. PubMed ID: 28098323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagrammatics of tunable interactions in anisotropic colloids in rotating electric or magnetic fields: New kind of dipole-like interactions.
    Komarov KA; Yurchenko SO
    J Chem Phys; 2021 Sep; 155(11):114107. PubMed ID: 34551538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering.
    Komarov KA; Mantsevich VN; Yurchenko SO
    J Chem Phys; 2021 Aug; 155(8):084903. PubMed ID: 34470364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs.
    Komarov KA; Yurchenko SO
    Soft Matter; 2020 Sep; 16(35):8155-8168. PubMed ID: 32797126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field controlled composite paramagnetic-diamagnetic colloidal phases.
    Ray A; Fischer TM
    J Phys Chem B; 2012 Jul; 116(28):8233-40. PubMed ID: 22721006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable interactions between particles in conically rotating electric fields.
    Komarov KA; Kryuchkov NP; Yurchenko SO
    Soft Matter; 2018 Dec; 14(47):9657-9674. PubMed ID: 30457624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional colloidal aggregation mediated by the range of repulsive interactions.
    Fernández-Toledano JC; Moncho-Jordá A; Martínez-López F; González AE; Hidalgo-Alvarez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041408. PubMed ID: 17500895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.
    Zhuang Y; Charbonneau P
    J Phys Chem B; 2016 Aug; 120(32):7775-82. PubMed ID: 27466702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium cluster formation in concentrated protein solutions and colloids.
    Stradner A; Sedgwick H; Cardinaux F; Poon WC; Egelhaaf SU; Schurtenberger P
    Nature; 2004 Nov; 432(7016):492-5. PubMed ID: 15565151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microphase separation in two-dimensional systems with competing interactions.
    Imperio A; Reatto L
    J Chem Phys; 2006 Apr; 124(16):164712. PubMed ID: 16674162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overdamped dynamics of paramagnetic ellipsoids in a precessing magnetic field.
    Tierno P; Claret J; Sagués F; Cēbers A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021501. PubMed ID: 19391749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced diffusion and magnetophoresis of paramagnetic colloidal particles in rotating magnetic fields.
    Sherman ZM; Pallone JL; Erb RM; Swan JW
    Soft Matter; 2019 Aug; 15(33):6677-6689. PubMed ID: 31397836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of self-propulsion on equilibrium clustering.
    Mani E; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032301. PubMed ID: 26465467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.