These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28618517)

  • 1. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions.
    Steffenoni S; Falasco G; Kroy K
    Phys Rev E; 2017 May; 95(5-1):052142. PubMed ID: 28618517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
    Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R
    Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular theory of Langevin dynamics for active self-diffusiophoretic colloids.
    Robertson B; Schofield J; Gaspard P; Kapral R
    J Chem Phys; 2020 Sep; 153(12):124104. PubMed ID: 33003702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress correlation function and linear response of Brownian particles.
    Vogel F; Fuchs M
    Eur Phys J E Soft Matter; 2020 Nov; 43(11):70. PubMed ID: 33190209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial dynamics of an active Brownian particle.
    Mayer Martins J; Wittkowski R
    Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path integral approach to Brownian motion driven with an ac force.
    Chen LY; Nash PL
    J Chem Phys; 2004 Sep; 121(9):3984-8. PubMed ID: 15332944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating Brownian suspensions with fluctuating hydrodynamics.
    Delmotte B; Keaveny EE
    J Chem Phys; 2015 Dec; 143(24):244109. PubMed ID: 26723653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overdamped stochastic thermodynamics with multiple reservoirs.
    Murashita Y; Esposito M
    Phys Rev E; 2016 Dec; 94(6-1):062148. PubMed ID: 28085477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fixed-density boundary conditions in overdamped Langevin simulations of diffusion in channels.
    Ramírez-Piscina L
    Phys Rev E; 2018 Jul; 98(1-1):013302. PubMed ID: 30110749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid.
    Volkov VS; Leonov AI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051113. PubMed ID: 11735906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy production of a Brownian ellipsoid in the overdamped limit.
    Marino R; Eichhorn R; Aurell E
    Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.