These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Finite-time effects and ultraweak ergodicity breaking in superdiffusive dynamics. Godec A; Metzler R Phys Rev Lett; 2013 Jan; 110(2):020603. PubMed ID: 23383882 [TBL] [Abstract][Full Text] [Related]
5. Nonergodicity of d-dimensional generalized Lévy walks and their relation to other space-time coupled models. Albers T; Radons G Phys Rev E; 2022 Jan; 105(1-1):014113. PubMed ID: 35193310 [TBL] [Abstract][Full Text] [Related]
6. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482 [TBL] [Abstract][Full Text] [Related]
7. Inhomogeneous diffusion and ergodicity breaking induced by global memory effects. Budini AA Phys Rev E; 2016 Nov; 94(5-1):052142. PubMed ID: 27967169 [TBL] [Abstract][Full Text] [Related]
8. Ergodicity, rejuvenation, enhancement, and slow relaxation of diffusion in biased continuous-time random walks. Akimoto T; Cherstvy AG; Metzler R Phys Rev E; 2018 Aug; 98(2-1):022105. PubMed ID: 30253516 [TBL] [Abstract][Full Text] [Related]
9. Mean squared displacement in a generalized Lévy walk model. Bothe M; Sagues F; Sokolov IM Phys Rev E; 2019 Jul; 100(1-1):012117. PubMed ID: 31499852 [TBL] [Abstract][Full Text] [Related]
10. Fidelity of the diagonal ensemble signals the many-body localization transition. Hu T; Xue K; Li X; Zhang Y; Ren H Phys Rev E; 2016 Nov; 94(5-1):052119. PubMed ID: 27967130 [TBL] [Abstract][Full Text] [Related]
11. Coexistence of ergodicity and nonergodicity in the aging two-state random walks. Liu J; Jin Y; Bao JD; Chen X Soft Matter; 2022 Nov; 18(45):8687-8699. PubMed ID: 36349834 [TBL] [Abstract][Full Text] [Related]
12. Subdiffusion in time-averaged, confined random walks. Neusius T; Sokolov IM; Smith JC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011109. PubMed ID: 19658655 [TBL] [Abstract][Full Text] [Related]
13. Emergence of Lévy walks in systems of interacting individuals. Fedotov S; Korabel N Phys Rev E; 2017 Mar; 95(3-1):030107. PubMed ID: 28415295 [TBL] [Abstract][Full Text] [Related]
14. Behavior analysis of virtual-item gambling. Wang X; Pleimling M Phys Rev E; 2018 Jul; 98(1-1):012126. PubMed ID: 30110801 [TBL] [Abstract][Full Text] [Related]
15. Taming Lévy flights in confined crowded geometries. Cieśla M; Dybiec B; Sokolov I; Gudowska-Nowak E J Chem Phys; 2015 Apr; 142(16):164904. PubMed ID: 25933788 [TBL] [Abstract][Full Text] [Related]
16. Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. Cristadoro G; Gilbert T; Lenci M; Sanders DP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):050102. PubMed ID: 25493720 [TBL] [Abstract][Full Text] [Related]
17. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion. Godec A; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012116. PubMed ID: 23944423 [TBL] [Abstract][Full Text] [Related]
18. Memory-induced anomalous dynamics in a minimal random walk model. Harbola U; Kumar N; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022136. PubMed ID: 25215717 [TBL] [Abstract][Full Text] [Related]
19. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion. Boyer D; Romo-Cruz JC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042136. PubMed ID: 25375467 [TBL] [Abstract][Full Text] [Related]
20. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Cherstvy AG; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012134. PubMed ID: 25122278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]