These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28618577)

  • 1. Double diffusivity model under stochastic forcing.
    Chattopadhyay AK; Aifantis EC
    Phys Rev E; 2017 May; 95(5-1):052134. PubMed ID: 28618577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast grain boundary diffusion and surface exchange reactions at active surface sites of polycrystalline materials.
    Preis W
    Phys Chem Chem Phys; 2006 Jun; 8(22):2629-34. PubMed ID: 16738717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate theory models for ion transport through rigid pores. I. Time-dependent analysis in the case of vanishing interactions.
    Frehland E; Stephan W
    J Theor Biol; 1983 Jul; 103(1):77-97. PubMed ID: 6621070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions.
    Ghosh A; Leier A; Marquez-Lago TT
    Theor Biol Med Model; 2015 Feb; 12():5. PubMed ID: 25888773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature and grain size on diffusivity of aluminium: electromigration experiment and molecular dynamic simulation.
    Cui Z; Zhang Y; Hu D; Vollebregt S; Fan J; Fan X; Zhang G
    J Phys Condens Matter; 2022 Feb; 34(17):. PubMed ID: 35030543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pipe and grain boundary diffusion of He in UO2.
    Galvin CO; Cooper MW; Fossati PC; Stanek CR; Grimes RW; Andersson DA
    J Phys Condens Matter; 2016 Oct; 28(40):405002. PubMed ID: 27537341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Langevin equation with fluctuating diffusivity: A two-state model.
    Miyaguchi T; Akimoto T; Yamamoto E
    Phys Rev E; 2016 Jul; 94(1-1):012109. PubMed ID: 27575079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach.
    Kim C; Nonaka A; Bell JB; Garcia AL; Donev A
    J Chem Phys; 2017 Mar; 146(12):124110. PubMed ID: 28388111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian simulations and unidirectional flux in diffusion.
    Singer A; Schuss Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026115. PubMed ID: 15783386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape framework and global stability for stochastic reaction diffusion and general spatially extended systems with intrinsic fluctuations.
    Wu W; Wang J
    J Phys Chem B; 2013 Oct; 117(42):12908-34. PubMed ID: 23865936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advection improves homogenized models of continuum diffusion in one-dimensional heterogeneous media.
    Carr EJ
    Phys Rev E; 2019 Dec; 100(6-1):062113. PubMed ID: 31962444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2.Y2O3.
    Knoner G; Reimann K; Rower R; Sodervall U; Schaefer HE
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3870-3. PubMed ID: 12655074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.
    Liu Y; Zhou X; Wang D; Song C; Liu J
    J Hazard Mater; 2015 Dec; 299():685-95. PubMed ID: 26291782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal microstructure effects on effective gas diffusivity of a nanoporous medium based on pore-scale numerical simulations with lattice Boltzmann method.
    Hu B; Wang JG
    Phys Rev E; 2021 Dec; 104(6-2):065304. PubMed ID: 35030825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the effective gas diffusivity of a porous composite medium from the three-dimensional reconstruction of its microstructure.
    Berson A; Choi HW; Pharoah JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026310. PubMed ID: 21405909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Langevin model for reactive transport in porous media.
    Tartakovsky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026302. PubMed ID: 20866900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical schemes for continuum models of reaction-diffusion systems subject to internal noise.
    Moro E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045102. PubMed ID: 15600447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.