These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28618586)

  • 1. Pattern of a confined chemical garden controlled by injection speed.
    Wagatsuma S; Higashi T; Sumino Y; Achiwa A
    Phys Rev E; 2017 May; 95(5-1):052220. PubMed ID: 28618586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confined direct and reverse chemical gardens: Influence of local flow velocity on precipitation patterns.
    Ziemecka I; Brau F; De Wit A
    Chaos; 2020 Jan; 30(1):013140. PubMed ID: 32013509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archimedean Spirals Form at Low Flow Rates in Confined Chemical Gardens.
    Rocha LAM; Thorne L; Wong JJ; Cartwright JHE; Cardoso SSS
    Langmuir; 2022 May; 38(21):6700-6710. PubMed ID: 35593590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precipitation-induced filament pattern of injected fluid controlled by a structured cell.
    Tanaka S; Otoguro K; Kunihiro M; Ishikawa H; Sumino Y
    Phys Rev E; 2024 Jun; 109(6-2):065105. PubMed ID: 39020995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry.
    Ding Y; Gutiérrez-Ariza CM; Zheng M; Felgate A; Lawes A; Sainz-Díaz CI; Cartwright JHE; Cardoso SSS
    Phys Chem Chem Phys; 2022 Jul; 24(29):17841-17851. PubMed ID: 35851594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry.
    Balog E; Bittmann K; Schwarzenberger K; Eckert K; De Wit A; Schuszter G
    Phys Chem Chem Phys; 2019 Feb; 21(6):2910-2918. PubMed ID: 30675601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genericity of confined chemical garden patterns with regard to changes in the reactants.
    Haudin F; Brasiliense V; Cartwright JH; Brau F; De Wit A
    Phys Chem Chem Phys; 2015 May; 17(19):12804-11. PubMed ID: 25908388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions.
    Batista BC; Morris AZ; Steinbock O
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2305172120. PubMed ID: 37399415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of mineralization and injection flow rate on flow patterns in three-dimensional porous media.
    Moosavi R; Kumar A; De Wit A; Schröter M
    Phys Chem Chem Phys; 2019 Jul; 21(27):14605-14611. PubMed ID: 31206119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filament dynamics in vertical confined chemical gardens.
    Rocha LAM; Cartwright JHE; Cardoso SSS
    Chaos; 2022 May; 32(5):053107. PubMed ID: 35649986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability.
    Jones DEH; Walter U
    J Colloid Interface Sci; 1998 Jul; 203(2):286-93. PubMed ID: 9705766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern formation during deformation of a confined viscoelastic layer: from a viscous liquid to a soft elastic solid.
    Nase J; Lindner A; Creton C
    Phys Rev Lett; 2008 Aug; 101(7):074503. PubMed ID: 18764541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical-garden formation, morphology, and composition. I. Effect of the nature of the cations.
    Cartwright JH; Escribano B; Sainz-Daz CI
    Langmuir; 2011 Apr; 27(7):3286-93. PubMed ID: 21391635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-Induced Precipitation in Thin Capillaries Creates Helices, Lamellae, and Tubes.
    Knoll P; Gonzalez AV; McQueen ZC; Steinbock O
    Chemistry; 2019 Nov; 25(61):13885-13889. PubMed ID: 31469925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral precipitation patterns in confined chemical gardens.
    Haudin F; Cartwright JH; Brau F; De Wit A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17363-7. PubMed ID: 25385581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of iron-phosphate-silicate chemical garden structures.
    Barge LM; Doloboff IJ; White LM; Stucky GD; Russell MJ; Kanik I
    Langmuir; 2012 Feb; 28(8):3714-21. PubMed ID: 22035594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern.
    Martel R; Hébert A; Lefebvre R; Gélinas P; Gabriel U
    J Contam Hydrol; 2004 Nov; 75(1-2):1-29. PubMed ID: 15385096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels.
    Head DA; Briels WJ; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032705. PubMed ID: 24730872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of radial injection and solution thickness on the dynamics of confined A + B → C chemical fronts.
    Tóth Á; Schuszter G; Das NP; Lantos E; Horváth D; De Wit A; Brau F
    Phys Chem Chem Phys; 2020 May; 22(18):10278-10285. PubMed ID: 32356539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.