These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28618630)

  • 1. Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation.
    Kuznetsov M; Kolobov A; Polezhaev A
    Phys Rev E; 2017 May; 95(5-1):052208. PubMed ID: 28618630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Turing-Hopf Bifurcation Scenario for Pattern Formation on Growing Domains.
    Castillo JA; Sánchez-Garduño F; Padilla P
    Bull Math Biol; 2016 Jul; 78(7):1410-49. PubMed ID: 27412157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of subcritical Hopf bifurcations in the two-dimensional FitzHugh-Nagumo model.
    Sehgal S; Foulkes AJ
    Phys Rev E; 2020 Jul; 102(1-1):012212. PubMed ID: 32795073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection.
    Yochelis A; Sheintuch M
    Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-time-delay limit of the self-coupled FitzHugh-Nagumo system.
    Erneux T; Weicker L; Bauer L; Hövel P
    Phys Rev E; 2016 Feb; 93(2):022208. PubMed ID: 26986332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2018 Jun; 97(6-1):062206. PubMed ID: 30011462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair of excitable FitzHugh-Nagumo elements: synchronization, multistability, and chaos.
    Yanagita T; Ichinomiya T; Oyama Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056218. PubMed ID: 16383738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcritical Turing bifurcation and the morphogenesis of localized patterns.
    Breña-Medina V; Champneys A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032923. PubMed ID: 25314520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifront regime of a piecewise-linear FitzHugh-Nagumo model with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2019 Jun; 99(6-1):062214. PubMed ID: 31330591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leap-frog patterns in systems of two coupled FitzHugh-Nagumo units.
    Eydam S; Franović I; Wolfrum M
    Phys Rev E; 2019 Apr; 99(4-1):042207. PubMed ID: 31108685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widening the criteria for emergence of Turing patterns.
    Kuznetsov M; Polezhaev A
    Chaos; 2020 Mar; 30(3):033106. PubMed ID: 32237770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regular patterns in dichotomically driven activator-inhibitor dynamics.
    Sailer X; Hennig D; Beato V; Engel H; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056209. PubMed ID: 16803028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-phase patterns in forced oscillatory systems.
    Lin AL; Hagberg A; Ardelea A; Bertram M; Swinney HL; Meron E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3790-8. PubMed ID: 11088896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavy fronts in a hyperbolic FitzHugh-Nagumo system and the effects of cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062917. PubMed ID: 26172782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical approach for parameter identification by Turing patterns.
    Kazarnikov A; Haario H
    J Theor Biol; 2020 Sep; 501():110319. PubMed ID: 32416093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent localized patterns in a predator-prey model.
    Al Saadi F; Knobloch E; Nelson M; Uecker H
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38629791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh-Nagumo Model of Nerve Cell Dynamics.
    Gani MO; Kabir MH; Ogawa T
    Bull Math Biol; 2022 Nov; 84(12):145. PubMed ID: 36350426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turing pattern formation in coupled reaction-diffusion system with distributed delays.
    Ji L; Li QS
    J Chem Phys; 2005 Sep; 123(9):94509. PubMed ID: 16164355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.