These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28618647)

  • 1. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks.
    Vågberg D; Olsson P; Teitel S
    Phys Rev E; 2017 May; 95(5-1):052903. PubMed ID: 28618647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks.
    Vågberg D; Olsson P; Teitel S
    Phys Rev E; 2017 Jan; 95(1-1):012902. PubMed ID: 28208467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts.
    Marschall TA; Teitel S
    Phys Rev E; 2019 Sep; 100(3-1):032906. PubMed ID: 31639991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical scaling of Bagnold rheology at the jamming transition of frictionless two-dimensional disks.
    Vågberg D; Olsson P; Teitel S
    Phys Rev E; 2016 May; 93(5):052902. PubMed ID: 27300966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Particle rotations and orientational ordering.
    Marschall TA; Van Hoesen D; Teitel S
    Phys Rev E; 2020 Mar; 101(3-1):032901. PubMed ID: 32290000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Spatial structure and correlations.
    Marschall TA; Teitel S
    Phys Rev E; 2020 Mar; 101(3-1):032907. PubMed ID: 32289919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure distribution and critical exponent in statically jammed and shear-driven frictionless disks.
    Vågberg D; Wu Y; Olsson P; Teitel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022201. PubMed ID: 25353461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Athermal jamming versus thermalized glassiness in sheared frictionless particles.
    Olsson P; Teitel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010301. PubMed ID: 23944391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic length scales in athermal, shear-driven jamming of frictionless disks in two dimensions.
    Olsson P; Teitel S
    Phys Rev E; 2020 Oct; 102(4-1):042906. PubMed ID: 33212573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientational Ordering in Athermally Sheared, Aspherical, Frictionless Particles.
    Marschall T; Keta YE; Olsson P; Teitel S
    Phys Rev Lett; 2019 May; 122(18):188002. PubMed ID: 31144891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical scaling of shearing rheology at the jamming transition of soft-core frictionless disks.
    Olsson P; Teitel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):030302. PubMed ID: 21517441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glassiness, rigidity, and jamming of frictionless soft core disks.
    Vågberg D; Olsson P; Teitel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031307. PubMed ID: 21517494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from the viscous to inertial regime in dense suspensions.
    Trulsson M; Andreotti B; Claudin P
    Phys Rev Lett; 2012 Sep; 109(11):118305. PubMed ID: 23005688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physics of jamming for granular materials: a review.
    Behringer RP; Chakraborty B
    Rep Prog Phys; 2019 Jan; 82(1):012601. PubMed ID: 30132446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Athermal rheology of weakly attractive soft particles.
    Irani E; Chaudhuri P; Heussinger C
    Phys Rev E; 2016 Nov; 94(5-1):052608. PubMed ID: 27967137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of Inelastic Hard Spheres at Finite Density and Shear Rate.
    Kranz WT; Frahsa F; Zippelius A; Fuchs M; Sperl M
    Phys Rev Lett; 2018 Oct; 121(14):148002. PubMed ID: 30339456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear-Jammed, Fragile, and Steady States in Homogeneously Strained Granular Materials.
    Zhao Y; Barés J; Zheng H; Socolar JES; Behringer RP
    Phys Rev Lett; 2019 Oct; 123(15):158001. PubMed ID: 31702280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective packing fraction for better resolution near the critical point of shear thickening suspensions.
    Maharjan R; Brown E
    Phys Rev E; 2019 Apr; 99(4-1):042604. PubMed ID: 31108706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluidization of wet granulates under shear.
    Rahbari SH; Vollmer J; Herminghaus S; Brinkmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061305. PubMed ID: 21230670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and segregation of confined active particles.
    Yang X; Manning ML; Marchetti MC
    Soft Matter; 2014 Sep; 10(34):6477-84. PubMed ID: 25046587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.