These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28618792)

  • 1. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
    Yasui K; Izu N
    J Acoust Soc Am; 2017 Jun; 141(6):4398. PubMed ID: 28618792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)].
    Yasui K; Izu N
    J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation in a steady-flow thermoacoustic refrigerator.
    Hiller RA; Swift GW
    J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cascade thermoacoustic engine.
    Gardner DL; Swift GW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1905-19. PubMed ID: 14587591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation coefficient and condensation coefficient of vapor under high gas pressure conditions.
    Ohashi K; Kobayashi K; Fujii H; Watanabe M
    Sci Rep; 2020 May; 10(1):8143. PubMed ID: 32424295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines.
    Penelet G; Gusev V; Lotton P; Bruneau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016625. PubMed ID: 16090125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.
    Morii J; Biwa T; Yazaki T
    Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of traveling thermoacoustic shock waves (L).
    Biwa T; Takahashi T; Yazaki T
    J Acoust Soc Am; 2011 Dec; 130(6):3558-61. PubMed ID: 22225011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoacoustics with idealized heat exchangers and no stack.
    Wakeland RS; Keolian RM
    J Acoust Soc Am; 2002 Jun; 111(6):2654-64. PubMed ID: 12083198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine.
    Ahmed F; Yu G; Luo E
    J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.
    Nagayama G; Takematsu M; Mizuguchi H; Tsuruta T
    J Chem Phys; 2015 Jul; 143(1):014706. PubMed ID: 26156491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
    Abd El-Rahman AI; Abdel-Rahman E
    J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.