These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28618815)

  • 1. Convolutional neural network-based automatic classification of midsagittal tongue gestural targets using B-mode ultrasound images.
    Xu K; Roussel P; Csapó TG; Denby B
    J Acoust Soc Am; 2017 Jun; 141(6):EL531. PubMed ID: 28618815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic quantitative analysis of ultrasound tongue contours via wavelet-based functional mixed models.
    Lancia L; Rausch P; Morris JS
    J Acoust Soc Am; 2015 Feb; 137(2):EL178-83. PubMed ID: 25698047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoder-decoder CNN models for automatic tracking of tongue contours in real-time ultrasound data.
    Hamed Mozaffari M; Lee WS
    Methods; 2020 Jul; 179():26-36. PubMed ID: 32450205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain adaptation for ultrasound tongue contour extraction using transfer learning: A deep learning approach.
    Hamed Mozaffari M; Lee WS
    J Acoust Soc Am; 2019 Nov; 146(5):EL431. PubMed ID: 31795723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A procedure for estimating gestural scores from speech acoustics.
    Nam H; Mitra V; Tiede M; Hasegawa-Johnson M; Espy-Wilson C; Saltzman E; Goldstein L
    J Acoust Soc Am; 2012 Dec; 132(6):3980-9. PubMed ID: 23231127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory feature representation using convolutional restricted Boltzmann machine and Teager energy operator for speech recognition.
    Sailor HB; Patil HA
    J Acoust Soc Am; 2017 Jun; 141(6):EL500. PubMed ID: 28618812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound and acoustic analysis of sibilant fricatives in preadolescents and adults.
    Zharkova N
    J Acoust Soc Am; 2016 May; 139(5):2342. PubMed ID: 27250130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition.
    Hu Y; Wong Y; Wei W; Du Y; Kankanhalli M; Geng W
    PLoS One; 2018; 13(10):e0206049. PubMed ID: 30376567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Methods for Underwater Target Feature Extraction and Recognition.
    Hu G; Wang K; Peng Y; Qiu M; Shi J; Liu L
    Comput Intell Neurosci; 2018; 2018():1214301. PubMed ID: 29780407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics.
    Gilbert JM; Gonzalez JA; Cheah LA; Ell SR; Green P; Moore RK; Holdsworth E
    J Acoust Soc Am; 2017 Mar; 141(3):EL307. PubMed ID: 28372104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal acquisition of articulatory data: Geometrical and temporal registration.
    Aron M; Berger MO; Kerrien E; Wrobel-Dautcourt B; Potard B; Laprie Y
    J Acoust Soc Am; 2016 Feb; 139(2):636-48. PubMed ID: 26936548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring articulation and recognizing gestures from acoustics with a neural network trained on x-ray microbeam data.
    Papcun G; Hochberg J; Thomas TR; Laroche F; Zacks J; Levy S
    J Acoust Soc Am; 1992 Aug; 92(2 Pt 1):688-700. PubMed ID: 1506525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.
    White C; Ismail HD; Saigo H; Kc DB
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):577. PubMed ID: 29297322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal properties of gestures in North American English /r/.
    Campbell F; Gick B; Wilson I; Vatikiotis-Bateson E
    Lang Speech; 2010; 53(Pt 1):49-69. PubMed ID: 20415002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three speech sounds, one motor action: evidence for speech-motor disparity from English flap production.
    Derrick D; Stavness I; Gick B
    J Acoust Soc Am; 2015 Mar; 137(3):1493-502. PubMed ID: 25786960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-hypothesis tracking of the tongue surface in ultrasound video recordings of normal and impaired speech.
    Laporte C; Ménard L
    Med Image Anal; 2018 Feb; 44():98-114. PubMed ID: 29232649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
    Ma J; Wu F; Jiang T; Zhao Q; Kong D
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A normative-speaker validation study of two indices developed to quantify tongue dorsum activity from midsagittal tongue shapes.
    Zharkova N
    Clin Linguist Phon; 2013 Jul; 27(6-7):484-96. PubMed ID: 23651147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using electromagnetic articulography with a tongue lateral sensor to discriminate manner of articulation.
    Katz WF; Mehta S; Wood M; Wang J
    J Acoust Soc Am; 2017 Jan; 141(1):EL57. PubMed ID: 28147568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.