These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28618818)

  • 1. Passive bottom reflection-loss estimation using ship noise and a vertical line array.
    Muzi L; Siderius M; Verlinden CM
    J Acoust Soc Am; 2017 Jun; 141(6):4372. PubMed ID: 28618818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.
    Muzi L; Siderius M; Quijano JE; Dosso SE
    J Acoust Soc Am; 2015 Jan; 137(1):481-91. PubMed ID: 25618076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency based noise coherence-function extension and application to passive bottom-loss estimation.
    Muzi L; Siderius M; Nielsen PL
    J Acoust Soc Am; 2016 Sep; 140(3):1513. PubMed ID: 27914391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the contribution of ship noise to the underwater sound field.
    Shajahan N; Barclay DR; Lin YT
    J Acoust Soc Am; 2020 Dec; 148(6):3863. PubMed ID: 33379894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subbottom profiling using a ship towed line array and geoacoustic inversion.
    Yang TC; Yoo K; Fialkowski LT
    J Acoust Soc Am; 2007 Dec; 122(6):3338-52. PubMed ID: 18247744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of beamforming algorithms for passive bottom reflection-loss estimation.
    Muzi L; Siderius M; Gebbie J
    J Acoust Soc Am; 2018 Nov; 144(5):3046. PubMed ID: 30522322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent processing of shipping noise for ocean monitoring.
    Lani SW; Sabra KG; Hodgkiss WS; Kuperman WA; Roux P
    J Acoust Soc Am; 2013 Feb; 133(2):EL108-13. PubMed ID: 23363189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness and constraints of ambient noise inversion.
    Arvelo JI
    J Acoust Soc Am; 2008 Feb; 123(2):679-86. PubMed ID: 18247872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian geoacoustic inversion of ship noise on a horizontal array.
    Tollefsen D; Dosso SE
    J Acoust Soc Am; 2008 Aug; 124(2):788-95. PubMed ID: 18681571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive passive fathometer processing.
    Siderius M; Song H; Gerstoft P; Hodgkiss WS; Hursky P; Harrison C
    J Acoust Soc Am; 2010 Apr; 127(4):2193-200. PubMed ID: 20370000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance comparisons of array invariant and matched field processing using broadband ship noise and a tilted vertical array.
    Byun G; Song HC; Kim JS
    J Acoust Soc Am; 2018 Dec; 144(6):3067. PubMed ID: 30599643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the roll angle in a triplet towed array using oceanic surface-generated ambient noise.
    Lee K; Seong W; Kim S
    J Acoust Soc Am; 2017 Jul; 142(1):EL123. PubMed ID: 28764483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Array element localization using ship noise.
    Morley MG; Dosso SE; Chapman NR
    J Acoust Soc Am; 2009 Mar; 125(3):1403-9. PubMed ID: 19275297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal environmental estimation with ocean ambient noise.
    Gebbie J; Siderius M
    J Acoust Soc Am; 2021 Feb; 149(2):825. PubMed ID: 33639811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of multiple ships using a vertical array in shallow water.
    Byun G; Song HC; Byun SH
    J Acoust Soc Am; 2019 Jun; 145(6):EL528. PubMed ID: 31255094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian geoacoustic inversion using wind-driven ambient noise.
    Quijano JE; Dosso SE; Dettmer J; Zurk LM; Siderius M; Harrison CH
    J Acoust Soc Am; 2012 Apr; 131(4):2658-67. PubMed ID: 22501046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic ship signature measurements by cross-correlation method.
    Fillinger L; Sutin A; Sedunov A
    J Acoust Soc Am; 2011 Feb; 129(2):774-8. PubMed ID: 21361436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.
    Roh HS; Sutin A; Bunin B
    J Acoust Soc Am; 2008 Jun; 123(6):EL139-43. PubMed ID: 18537300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive geoacoustic inversion using ambient noise.
    Yardim C; Gerstoft P; Hodgkiss WS; Traer J
    J Acoust Soc Am; 2014 Mar; 135(3):1245-55. PubMed ID: 24606266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena).
    Hermannsen L; Beedholm K; Tougaard J; Madsen PT
    J Acoust Soc Am; 2014 Oct; 136(4):1640-53. PubMed ID: 25324068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.