These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28618821)

  • 1. Low-intensity ultrasound activates vestibular otolith organs through acoustic radiation force.
    Iversen MM; Christensen DA; Parker DL; Holman HA; Chen J; Frerck MJ; Rabbitt RD
    J Acoust Soc Am; 2017 Jun; 141(6):4209. PubMed ID: 28618821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional sound sensitivity in utricular afferents in the toadfish Opsanus tau.
    Maruska KP; Mensinger AF
    J Exp Biol; 2015 Jun; 218(Pt 11):1759-66. PubMed ID: 25883378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing.
    Curthoys IS; Grant JW; Pastras CJ; Brown DJ; Burgess AM; Brichta AM; Lim R
    J Neurophysiol; 2019 Jul; 122(1):259-276. PubMed ID: 31042414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
    Straka H; Holler S; Goto F
    J Neurophysiol; 2002 Nov; 88(5):2287-301. PubMed ID: 12424270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of toadfish (
    Rogers LS; Van Wert JC; Mensinger AF
    J Neurophysiol; 2022 Aug; 128(2):364-377. PubMed ID: 35830608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound.
    Curthoys IS; Vulovic V; Sokolic L; Pogson J; Burgess AM
    Brain Res Bull; 2012 Oct; 89(1-2):16-21. PubMed ID: 22814095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses.
    Angelaki DE; Dickman JD
    J Neurophysiol; 2000 Oct; 84(4):2113-32. PubMed ID: 11024100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural readaptation to Earth's gravity following return from space.
    Boyle R; Mensinger AF; Yoshida K; Usui S; Intravaia A; Tricas T; Highstein SM
    J Neurophysiol; 2001 Oct; 86(4):2118-22. PubMed ID: 11600668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function.
    Curthoys IS; Vulovic V; Burgess AM; Cornell ED; Mezey LE; Macdougall HG; Manzari L; McGarvie LA
    Ann N Y Acad Sci; 2011 Sep; 1233():231-41. PubMed ID: 21950999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function.
    Curthoys IS; MacDougall HG; Vidal PP; de Waele C
    Front Neurol; 2017; 8():117. PubMed ID: 28424655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular primary afferent responses to sound and vibration in the guinea pig.
    Curthoys IS; Vulovic V
    Exp Brain Res; 2011 May; 210(3-4):347-52. PubMed ID: 21113779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology of the utricular otolith organ in the toadfish, Opsanus tau.
    Boyle R; Ehsanian R; Mofrad A; Popova Y; Varelas J
    J Comp Neurol; 2018 Jun; 526(9):1571-1588. PubMed ID: 29524209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation.
    Curthoys IS; Dlugaiczyk J
    Curr Opin Neurol; 2020 Feb; 33(1):126-135. PubMed ID: 31789675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS).
    Curthoys IS; Vulovic V; Burgess AM; Sokolic L; Goonetilleke SC
    Hear Res; 2016 Jan; 331():131-43. PubMed ID: 26626360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Vestibular nystagmus as a result of the interactions between semicircular canals and the otolithic membrane subsystems of the vestibular system].
    Stolbkov IuK
    Kosm Biol Aviakosm Med; 1991; 25(3):28-31. PubMed ID: 1663187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does high-frequency sound or vibration activate vestibular receptors?
    Curthoys IS; Grant JW
    Exp Brain Res; 2015 Mar; 233(3):691-9. PubMed ID: 25567092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.