These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 28619035)
1. An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli. Kim HA; Kim HJ; Park J; Choi AR; Heo K; Jeong H; Jung KH; Seok YJ; Kim P; Lee SJ Microb Cell Fact; 2017 Jun; 16(1):111. PubMed ID: 28619035 [TBL] [Abstract][Full Text] [Related]
2. Genome Variations of Evolved Escherichia coli ET8 With a Rhodopsin-Based Phototrophic Metabolism. Kim HA; Kim HJ; Lee MJ; Park J; Choi AR; Jeong H; Jung KH; Kim P; Lee SJ Biotechnol J; 2018 Jul; 13(7):e1700497. PubMed ID: 29469946 [TBL] [Abstract][Full Text] [Related]
3. Cellulose production is coupled to sensing of the pyrimidine biosynthetic pathway via c-di-GMP production by the DgcQ protein of Escherichia coli. Rossi E; Motta S; Aliverti A; Cossu F; Gourlay L; Mauri P; Landini P Environ Microbiol; 2017 Nov; 19(11):4551-4563. PubMed ID: 28892259 [TBL] [Abstract][Full Text] [Related]
4. Improved production of β-carotene in light-powered Escherichia coli by co-expression of Gloeobacter rhodopsin expression. Lee CY; Chen KW; Chiang CL; Kao HY; Yu HC; Lee HC; Chen WL Microb Cell Fact; 2023 Oct; 22(1):207. PubMed ID: 37817206 [TBL] [Abstract][Full Text] [Related]
5. [Heterologous expression and function evaluation of Gloeobacter violaceus rhodopsin in Escherichia coli]. Fang J; Zhu T; Zhang Y; Li Y Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):604-614. PubMed ID: 33645158 [TBL] [Abstract][Full Text] [Related]
6. Efficient enzymatic production of the bacterial second messenger c-di-GMP by the diguanylate cyclase YdeH from E. coli. Zähringer F; Massa C; Schirmer T Appl Biochem Biotechnol; 2011 Jan; 163(1):71-9. PubMed ID: 20582742 [TBL] [Abstract][Full Text] [Related]
7. The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Miranda MR; Choi AR; Shi L; Bezerra AG; Jung KH; Brown LS Biophys J; 2009 Feb; 96(4):1471-81. PubMed ID: 19217863 [TBL] [Abstract][Full Text] [Related]
8. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria. Agostoni M; Waters CM; Montgomery BL Biotechnol Bioeng; 2016 Feb; 113(2):311-9. PubMed ID: 26192200 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Antoniani D; Bocci P; Maciag A; Raffaelli N; Landini P Appl Microbiol Biotechnol; 2010 Jan; 85(4):1095-104. PubMed ID: 19707751 [TBL] [Abstract][Full Text] [Related]
11. The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein. Dahlstrom KM; Giglio KM; Sondermann H; O'Toole GA J Bacteriol; 2016 Jun; 198(11):1595-603. PubMed ID: 27002135 [TBL] [Abstract][Full Text] [Related]
12. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Liu N; Xu Y; Hossain S; Huang N; Coursolle D; Gralnick JA; Boon EM Biochemistry; 2012 Mar; 51(10):2087-99. PubMed ID: 22360279 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of starvation induced msdgc-1 promoter involved in the c-di-GMP turnover. Bharati BK; Swetha RK; Chatterji D Gene; 2013 Oct; 528(2):99-108. PubMed ID: 23932989 [TBL] [Abstract][Full Text] [Related]
15. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. Choi AR; Shi L; Brown LS; Jung KH PLoS One; 2014; 9(10):e110643. PubMed ID: 25347537 [TBL] [Abstract][Full Text] [Related]
16. Growth retardation of Escherichia coli by artificial increase of intracellular ATP. Na YA; Lee JY; Bang WJ; Lee HJ; Choi SI; Kwon SK; Jung KH; Kim JF; Kim P J Ind Microbiol Biotechnol; 2015 Jun; 42(6):915-24. PubMed ID: 25838237 [TBL] [Abstract][Full Text] [Related]
17. Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola. Keffer JL; Hahn MW; Maresca JA J Bacteriol; 2015 Aug; 197(16):2704-12. PubMed ID: 26055118 [TBL] [Abstract][Full Text] [Related]
18. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Tuckerman JR; Gonzalez G; Sousa EH; Wan X; Saito JA; Alam M; Gilles-Gonzalez MA Biochemistry; 2009 Oct; 48(41):9764-74. PubMed ID: 19764732 [TBL] [Abstract][Full Text] [Related]
19. The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases. Wan X; Saito JA; Newhouse JS; Hou S; Alam M PLoS One; 2017; 12(8):e0182782. PubMed ID: 28792538 [TBL] [Abstract][Full Text] [Related]
20. Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Cohen D; Mechold U; Nevenzal H; Yarmiyhu Y; Randall TE; Bay DC; Rich JD; Parsek MR; Kaever V; Harrison JJ; Banin E Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11359-64. PubMed ID: 26305928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]