These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2861944)

  • 1. Control of chromatophore movements in dermal chromatic units of blue damselfish--I. The melanophore.
    Kasukawa H; Sugimoto M; Oshima N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):253-7. PubMed ID: 2861944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of chromatophore movements in dermal chromatic units of blue damselfish--II. The motile iridophore.
    Kasukawa H; Oshima N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 83(1):1-7. PubMed ID: 2869880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor mechanisms in fish chromatophores--VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores.
    Kasukawa H; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 80(2):211-5. PubMed ID: 2860997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor mechanisms in fish chromatophores--VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores.
    Fujii R; Oshima N; Miyashita Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(1):1-6. PubMed ID: 2861032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divisionistic generation of skin hue and the change of shade in the scalycheek damselfish, Pomacentrus lepidogenys.
    Kasukawa H; Oshima N
    Pigment Cell Res; 1987; 1(3):152-7. PubMed ID: 3508273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melanin concentrating hormone (MCH) effects on teleost (Chrysiptera cyanea) melanophores.
    Oshima N; Kasukawa H; Fujii R; Wilkes BC; Hruby VJ; Castrucci AM; Hadley ME
    J Exp Zool; 1985 Aug; 235(2):175-80. PubMed ID: 4056687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analyses of the pigment-aggregating and -dispersing actions of MCH on fish chromatophores.
    Oshima N; Nakamaru N; Araki S; Sugimoto M
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Jun; 129(2):75-84. PubMed ID: 11423380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic alpha 2-adrenoceptors mediate melanosome aggregation in melanophores of the white-spotted rabbitfish (Siganus canaliculatus).
    Amiri MH
    Pak J Biol Sci; 2009 Jan; 12(1):1-10. PubMed ID: 19579911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of melanin-concentrating hormone (MCH) on teleost chromatophores.
    Oshima N; Kasukawa H; Fujii R; Wilkes BC; Hruby VJ; Hadley ME
    Gen Comp Endocrinol; 1986 Dec; 64(3):381-8. PubMed ID: 3026881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on melanophore receptors of Papiliochromis ramirezi (Teleostei, Cichlidae).
    Visconti MA; Castrucci AM; Valente D
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(1):161-5. PubMed ID: 6141872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of the medaka, Oryzias latipes.
    Morishita F; Katayama H; Yamada K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):279-85. PubMed ID: 2861947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denervation of pigment cells lead to a receptor that is ultrasensitive to melatonin and noradrenaline.
    Moartensson LG; Andersson RG
    Life Sci; 1997; 60(18):1575-82. PubMed ID: 9126879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A melatonin binding site modulates the alpha 2-adrenoceptor.
    MÃ¥rtensson LG; Andersson RG
    Life Sci; 1996; 58(6):525-33. PubMed ID: 8569426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Adrenergic receptor subtypes in melanophores of the marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus.
    Katayama H; Morishita F; Matsushima O; Fujimoto M
    Pigment Cell Res; 1999 Jun; 12(3):206-17. PubMed ID: 10385918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural control of motile activity of light-sensitive iridophores in the neon tetra.
    Nagaishi H; Oshima N
    Pigment Cell Res; 1989; 2(6):485-92. PubMed ID: 2557604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor mechanisms in fish chromatophores-I. Alpha nature of adrenoceptors mediating melanosome aggregation in guppy melanophores.
    Fujii R; Miyashita Y
    Comp Biochem Physiol C Comp Pharmacol; 1975 Aug; 51(2):171-8. PubMed ID: 241577
    [No Abstract]   [Full Text] [Related]  

  • 17. Adrenergic nerves and the alpha 2-adrenoceptor system regulating melanosome aggregation within fish melanophores.
    Andersson RG; Karlsson JO; Grundström N
    Acta Physiol Scand; 1984 Jun; 121(2):173-9. PubMed ID: 6147954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for spontaneous neuro-melanophore activity in Pseudopleuronectes americanus (Teleostei; Pleuronectiformes) during total darkness.
    Burton D; Borgaonkar J; Everard BA
    Experientia; 1991 Jan; 47(1):40-2. PubMed ID: 1999243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic nucleotide action is mediated through adenosine receptors in damselfish motile iridophores.
    Oshima N; Furuuchi T; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 85(1):89-93. PubMed ID: 2877810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sympathetic neuro-melanophore transmission in a fresh-water Indian major carp, Labeo rohita (Ham.).
    Patil S; Jain AK
    Indian J Physiol Pharmacol; 1989; 33(2):101-6. PubMed ID: 2550366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.