These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28619535)
1. Evolution and regulation of Bigelowiella natans light-harvesting antenna system. A D Neilson J; Rangsrikitphoti P; Durnford DG J Plant Physiol; 2017 Oct; 217():68-76. PubMed ID: 28619535 [TBL] [Abstract][Full Text] [Related]
2. Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Umetani I; Kunugi M; Yokono M; Takabayashi A; Tanaka A Photosynth Res; 2018 Apr; 136(1):49-61. PubMed ID: 28856533 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis and comparison of light-harvesting complexes I and II. Pan X; Cao P; Su X; Liu Z; Li M Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148038. PubMed ID: 31229568 [TBL] [Abstract][Full Text] [Related]
4. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. Durnford DG; Deane JA; Tan S; McFadden GI; Gantt E; Green BR J Mol Evol; 1999 Jan; 48(1):59-68. PubMed ID: 9873077 [TBL] [Abstract][Full Text] [Related]
5. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Litvín R; Bína D; Herbstová M; Gardian Z Photosynth Res; 2016 Dec; 130(1-3):137-150. PubMed ID: 26913864 [TBL] [Abstract][Full Text] [Related]
6. LHCSR3 is a nonphotochemical quencher of both photosystems in Girolomoni L; Cazzaniga S; Pinnola A; Perozeni F; Ballottari M; Bassi R Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4212-4217. PubMed ID: 30782831 [TBL] [Abstract][Full Text] [Related]
7. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Taddei L; Chukhutsina VU; Lepetit B; Stella GR; Bassi R; van Amerongen H; Bouly JP; Jaubert M; Finazzi G; Falciatore A Plant Physiol; 2018 Jul; 177(3):953-965. PubMed ID: 29773581 [TBL] [Abstract][Full Text] [Related]
9. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Koziol AG; Borza T; Ishida K; Keeling P; Lee RW; Durnford DG Plant Physiol; 2007 Apr; 143(4):1802-16. PubMed ID: 17307901 [TBL] [Abstract][Full Text] [Related]
10. Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. Ferroni L; Suorsa M; Aro EM; Baldisserotto C; Pancaldi S New Phytol; 2016 Jul; 211(2):554-68. PubMed ID: 27058989 [TBL] [Abstract][Full Text] [Related]
11. Unique Peripheral Antennas in the Photosystems of the Streptophyte Alga Mesostigma viride. Aso M; Matsumae R; Tanaka A; Tanaka R; Takabayashi A Plant Cell Physiol; 2021 Jul; 62(3):436-446. PubMed ID: 33416834 [TBL] [Abstract][Full Text] [Related]
12. The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Giovagnetti V; Ruban AV Biochem Soc Trans; 2018 Oct; 46(5):1263-1277. PubMed ID: 30154089 [TBL] [Abstract][Full Text] [Related]
13. LHCII is an antenna of both photosystems after long-term acclimation. Wientjes E; van Amerongen H; Croce R Biochim Biophys Acta; 2013 Mar; 1827(3):420-6. PubMed ID: 23298812 [TBL] [Abstract][Full Text] [Related]
14. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Drop B; Yadav K N S; Boekema EJ; Croce R Plant J; 2014 Apr; 78(2):181-91. PubMed ID: 24506306 [TBL] [Abstract][Full Text] [Related]
15. Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans. Suzuki S; Ishida K; Hirakawa Y Genome Biol Evol; 2016 Sep; 8(9):2672-82. PubMed ID: 27503292 [TBL] [Abstract][Full Text] [Related]
16. The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications. Tokutsu R; Teramoto H; Takahashi Y; Ono TA; Minagawa J Plant Cell Physiol; 2004 Feb; 45(2):138-45. PubMed ID: 14988484 [TBL] [Abstract][Full Text] [Related]
17. Regulation of excitation energy in Nannochloropsis photosystem II. Yokono M; Umetani I; Takabayashi A; Akimoto S; Tanaka A Photosynth Res; 2019 Mar; 139(1-3):155-161. PubMed ID: 29704164 [TBL] [Abstract][Full Text] [Related]
18. LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in Kosuge K; Tokutsu R; Kim E; Akimoto S; Yokono M; Ueno Y; Minagawa J Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3722-3727. PubMed ID: 29555769 [TBL] [Abstract][Full Text] [Related]
19. Formation of light-harvesting complex II aggregates from LHCII-PSI-LHCI complexes in rice plants under high light. Wu G; Ma L; Yuan C; Dai J; Luo L; Poudyal RS; Sayre RT; Lee CH J Exp Bot; 2021 Jun; 72(13):4938-4948. PubMed ID: 33939808 [TBL] [Abstract][Full Text] [Related]
20. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens. Pinnola A; Cazzaniga S; Alboresi A; Nevo R; Levin-Zaidman S; Reich Z; Bassi R Plant Cell; 2015 Nov; 27(11):3213-27. PubMed ID: 26508763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]