These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28620291)

  • 1. Network-Wide Adaptive Burst Detection Depicts Neuronal Activity with Improved Accuracy.
    Välkki IA; Lenk K; Mikkonen JE; Kapucu FE; Hyttinen JAK
    Front Comput Neurosci; 2017; 11():40. PubMed ID: 28620291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.
    Kapucu FE; Tanskanen JM; Mikkonen JE; Ylä-Outinen L; Narkilahti S; Hyttinen JA
    Front Comput Neurosci; 2012; 6():38. PubMed ID: 22723778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation.
    Mendis GD; Morrisroe E; Petrou S; Halgamuge SK
    J Neural Eng; 2016 Apr; 13(2):026009. PubMed ID: 26861133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks.
    Cotterill E; Charlesworth P; Thomas CW; Paulsen O; Eglen SJ
    J Neurophysiol; 2016 Aug; 116(2):306-21. PubMed ID: 27098024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint analysis of extracellular spike waveforms and neuronal network bursts.
    Kapucu FE; Mäkinen ME; Tanskanen JMA; Ylä-Outinen L; Narkilahti S; Hyttinen JAK
    J Neurosci Methods; 2016 Feb; 259():143-155. PubMed ID: 26675487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhomogeneities in Network Structure and Excitability Govern Initiation and Propagation of Spontaneous Burst Activity.
    Okujeni S; Egert U
    Front Neurosci; 2019; 13():543. PubMed ID: 31213971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements.
    Kapucu FE; Välkki I; Mikkonen JE; Leone C; Lenk K; Tanskanen JM; Hyttinen JA
    Front Comput Neurosci; 2016; 10():112. PubMed ID: 27803660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons.
    Fardet T; Ballandras M; Bottani S; Métens S; Monceau P
    Front Neurosci; 2018; 12():41. PubMed ID: 29467607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of developmental neurotoxicity: use of microelectrode arrays to measure functional changes in neuronal network ontogeny.
    Robinette BL; Harrill JA; Mundy WR; Shafer TJ
    Front Neuroeng; 2011; 4():1. PubMed ID: 21270946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays.
    Chen C; Chen L; Lin Y; Zeng S; Luo Q
    Biosystems; 2006 Aug; 85(2):137-43. PubMed ID: 16533555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons.
    Kim SY; Lim W
    Cogn Neurodyn; 2015 Apr; 9(2):179-200. PubMed ID: 25834648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burst Detection Methods.
    Cotterill E; Eglen SJ
    Adv Neurobiol; 2019; 22():185-206. PubMed ID: 31073937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information diversity in structure and dynamics of simulated neuronal networks.
    Mäki-Marttunen T; Aćimović J; Nykter M; Kesseli J; Ruohonen K; Yli-Harja O; Linne ML
    Front Comput Neurosci; 2011; 5():26. PubMed ID: 21852970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-contrast: A novel time scale independent and multivariate measure of spike train synchrony.
    Ciba M; Isomura T; Jimbo Y; Bahmer A; Thielemann C
    J Neurosci Methods; 2018 Jan; 293():136-143. PubMed ID: 28935422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Method for MEA Data Analysis of Drug-treated Rat Primary Neurons and Human iPSC-derived Neurons to Evaluate the Risk of Drug-induced Seizures].
    Ojima A; Miyamoto N
    Yakugaku Zasshi; 2018; 138(6):823-828. PubMed ID: 29863054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of bursts and tonic activity in multifunctional sensorimotor neural network using the extended hill-valley method.
    Chung BP; Edwards DH
    J Neurophysiol; 2019 Sep; 122(3):1073-1083. PubMed ID: 31215305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of stimulus induced responses in cultured hippocampal networks on microelectrode arrays.
    Pimashkin A; Gladkov A; Agrba E; Mukhina I; Kazantsev V
    Cogn Neurodyn; 2016 Aug; 10(4):287-99. PubMed ID: 27468317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs.
    Gandolfo M; Maccione A; Tedesco M; Martinoia S; Berdondini L
    J Neural Eng; 2010 Oct; 7(5):056001. PubMed ID: 20720282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameters for burst detection.
    Bakkum DJ; Radivojevic M; Frey U; Franke F; Hierlemann A; Takahashi H
    Front Comput Neurosci; 2013; 7():193. PubMed ID: 24567714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.