These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28620362)

  • 1. Commentary: Communication between Viruses Guides Lysis-Lysogeny Decisions.
    Abedon ST
    Front Microbiol; 2017; 8():983. PubMed ID: 28620362
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure Regulates Phage Lysis-Lysogeny Decisions.
    Trinh JT; Zeng L
    Trends Microbiol; 2019 Jan; 27(1):3-4. PubMed ID: 30502931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision.
    Igler C; Abedon ST
    Front Microbiol; 2019; 10():1171. PubMed ID: 31214137
    [No Abstract]   [Full Text] [Related]  

  • 4.
    Sinha V; Goyal A; Svenningsen SL; Semsey S; Krishna S
    Front Microbiol; 2017; 8():1386. PubMed ID: 28798729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the pneumococcal autolysin (murein hydrolase) in the release of progeny bacteriophage and in the bacteriophage-induced lysis of the host cells.
    Ronda-Lain C; Lopez R; Tapia A; Tomasz A
    J Virol; 1977 Jan; 21(1):366-74. PubMed ID: 13229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision.
    Liang X; Radosevich M
    Front Microbiol; 2019; 10():1201. PubMed ID: 31231325
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities.
    Dou C; Xiong J; Gu Y; Yin K; Wang J; Hu Y; Zhou D; Fu X; Qi S; Zhu X; Yao S; Xu H; Nie C; Liang Z; Yang S; Wei Y; Cheng W
    Nat Microbiol; 2018 Nov; 3(11):1285-1294. PubMed ID: 30323253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny.
    UETAKE H; LURIA SE; BURROUS JW
    Virology; 1958 Feb; 5(1):68-91. PubMed ID: 13519750
    [No Abstract]   [Full Text] [Related]  

  • 9. [Lysis from without of a culture of Actinomyces griseus--producer of the antibiotic kormogrizein].
    Rautenshteĭn IaI; Zhunaeva VV; Solov'eva NIa
    Mikrobiologiia; 1977; 46(6):1095-1102. PubMed ID: 414055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysis inhibition in Escherichia coli infected with bacteriophage T4.
    Bode W
    J Virol; 1967 Oct; 1(5):948-55. PubMed ID: 4912240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision.
    Kobiler O; Rokney A; Oppenheim AB
    PLoS One; 2007 Apr; 2(4):e363. PubMed ID: 17426811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76.
    Blatny JM; Ventura M; Rosenhaven EM; Risøen PA; Lunde M; Brüssow H; Nes IF
    Mol Genet Genomics; 2003 Jul; 269(4):487-98. PubMed ID: 12759744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coping with inadvertent lysis of Escherichia coli cultures: Strains resistant to lysogeny and infection by the stealthy lysogenic phage Φ80.
    Srinivas S; Cronan JE
    Biotechnol Bioeng; 2019 Jul; 116(7):1820-1826. PubMed ID: 30882900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel deep-sea bacteriophage possesses features of Wbeta-like viruses and prophages.
    Chen Y; Guo X; Wu J; Jin M; Zeng R
    Arch Virol; 2020 May; 165(5):1219-1223. PubMed ID: 32140835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny.
    McCullor K; Postoak B; Rahman M; King C; McShan WM
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spackle and immunity functions of bacteriophage T4.
    Cornett JB
    J Virol; 1974 Feb; 13(2):312-21. PubMed ID: 4589853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipase activity in bacteriophage-infected Escherichia coli. III. Phopholipase A involvement in lysis of T4-infected cells.
    Hardaway KL; Maten MV; Buller CS
    J Virol; 1975 Oct; 16(4):867-71. PubMed ID: 1100865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of lysogeny and lysis in phage--S. aureus systems.
    Weiss DL; Nitzkin P
    Am J Clin Pathol; 1971 Nov; 56(5):593-6. PubMed ID: 4256421
    [No Abstract]   [Full Text] [Related]  

  • 19. In situ lysis of phi29- and SPO1-infected Bacillus subtilis.
    Hagen EW; Anderson DL
    J Virol; 1975 Jan; 15(1):217-20. PubMed ID: 803567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the genetic switch in temperate bacteriophage. I. Basic theory.
    Mittler JE
    J Theor Biol; 1996 Mar; 179(2):161-72. PubMed ID: 8736310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.