These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28620850)

  • 1. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.
    Pawlowska A; Sznajder I; Sadowski Z
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17912-17919. PubMed ID: 28620850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled stream-subsurface exchange of colloidal hematite and dissolved zinc, copper, and phosphate.
    Ren J; Packman AI
    Environ Sci Technol; 2005 Sep; 39(17):6387-94. PubMed ID: 16190191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries.
    Mylon SE; Chen KL; Elimelech M
    Langmuir; 2004 Oct; 20(21):9000-6. PubMed ID: 15461479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe
    Emerson HP; Hickok KA; Powell BA
    J Environ Radioact; 2016 Dec; 165():168-181. PubMed ID: 27723529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.
    Basnet M; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-transport behavior of ammonium and colloids in saturated porous media under different hydrochemical conditions.
    Li J; Zhang W; Qin Y; Li X; Wu S; Chai J; Du S
    Environ Sci Pollut Res Int; 2020 May; 27(13):15068-15082. PubMed ID: 32065366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of arsenic loaded by ferric humate colloid in saturated porous media.
    Yao Y; Mi N; He C; Yin L; Zhou D; Zhang Y; Sun H; Yang S; Li S; He H
    Chemosphere; 2020 Feb; 240():124987. PubMed ID: 31726603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media.
    Wang M; Zhang H; Chen W; Lu T; Yang H; Wang X; Lu M; Qi Z; Li D
    Chemosphere; 2021 Feb; 265():129081. PubMed ID: 33288283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: Role of U(VI) concentration, pH and ionic strength.
    Ge M; Wang D; Yang J; Jin Q; Chen Z; Wu W; Guo Z
    Water Res; 2018 Dec; 147():350-361. PubMed ID: 30321825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid and heavy metal transport at landfill sites in direct contact with groundwater.
    Baumann T; Fruhstorfer P; Klein T; Niessner R
    Water Res; 2006 Aug; 40(14):2776-86. PubMed ID: 16820185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of dicarboxylic acid structure on the stability of colloidal hematite.
    Lenhart JJ; Heyler R; Walton EM; Mylon SE
    J Colloid Interface Sci; 2010 May; 345(2):556-60. PubMed ID: 20227085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength.
    Zhang H; Selim HM
    J Environ Qual; 2007; 36(5):1273-80. PubMed ID: 17636288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dissolved organic matter on the co-transport of mineral colloids and sorptive contaminants.
    Cheng T; Saiers JE
    J Contam Hydrol; 2015; 177-178():148-57. PubMed ID: 25938867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration of colloids in discretely fractured porous media: effect of colloidal matrix diffusion.
    Oswald JG; Ibaraki M
    J Contam Hydrol; 2001 Nov; 52(1-4):213-44. PubMed ID: 11695742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloid facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments.
    Grolimund D; Borkovec M
    Environ Sci Technol; 2005 Sep; 39(17):6378-86. PubMed ID: 16190190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of humic acid and bovine serum albumin on colloid-associated heavy metal transport in saturated porous media.
    Zhang W; Guo X; Jiang M
    Environ Technol; 2023 Nov; 44(26):3965-3974. PubMed ID: 35546295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the adsorption and coagulation of fulvic acids on colloids by Brownian dynamics simulations.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Environ Sci Technol; 2009 Oct; 43(19):7265-9. PubMed ID: 19848132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.