These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28620937)

  • 1. Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances.
    Kang Q; Vahl CI
    Pharm Stat; 2017 Sep; 16(5):361-377. PubMed ID: 28620937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumer's risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs.
    Muñoz J; Alcaide D; Ocaña J
    Stat Med; 2016 May; 35(12):1933-43. PubMed ID: 26707698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On statistical power for average bioequivalence testing under replicated crossover designs.
    Wan H; Chow SC
    J Biopharm Stat; 2002 Aug; 12(3):295-309. PubMed ID: 12448572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing individual bioequivalence with high-order cross-over designs: a unified procedure.
    Hsuan FC; Reeve R
    Stat Med; 2003 Sep; 22(18):2847-60. PubMed ID: 12953284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage designs versus European scaled average designs in bioequivalence studies for highly variable drugs: Which to choose?
    Molins E; Cobo E; Ocaña J
    Stat Med; 2017 Dec; 36(30):4777-4788. PubMed ID: 28853164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual bioequivalence revisited.
    Chen ML; Lesko LJ
    Clin Pharmacokinet; 2001; 40(10):701-6. PubMed ID: 11707058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs.
    Knahl SIE; Lang B; Fleischer F; Kieser M
    Eur J Clin Pharmacol; 2018 May; 74(5):549-559. PubMed ID: 29362819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.
    Maurer W; Jones B; Chen Y
    Stat Med; 2018 May; 37(10):1587-1607. PubMed ID: 29462835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-traditional study designs to demonstrate average bioequivalence for highly variable drug products.
    Patterson SD; Zariffa NM; Montague TH; Howland K
    Eur J Clin Pharmacol; 2001 Nov; 57(9):663-70. PubMed ID: 11791897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhRMA perspective on population and individual bioequivalence.
    Barrett JS; Batra V; Chow A; Cook J; Gould AL; Heller AH; Lo MW; Patterson SD; Smith BP; Stritar JA; Vega JM; Zariffa N
    J Clin Pharmacol; 2000 Jun; 40(6):561-70. PubMed ID: 10868305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample size determination for individual bioequivalence inference.
    Chiang C; Hsiao CF; Liu JP
    PLoS One; 2014; 9(10):e109746. PubMed ID: 25310592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subject-by-formulation interaction in bioequivalence: conceptual and statistical issues. FDA Population/Individual Bioequivalence Working Group. Food and Drug Administration.
    Hauck WW; Hyslop T; Chen ML; Patnaik R; Williams RL
    Pharm Res; 2000 Apr; 17(4):375-80. PubMed ID: 10870978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some statistical considerations on the FDA draft guidance for individual bioequivalence.
    Hsuan FC
    Stat Med; 2000 Oct; 19(20):2879-84. PubMed ID: 11033582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Exact Procedure for the Evaluation of Reference-Scaled Average Bioequivalence.
    Tothfalusi L; Endrenyi L
    AAPS J; 2016 Mar; 18(2):476-89. PubMed ID: 26831249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of models for average bioequivalence in replicated crossover designs.
    Willavize SA; Morgenthien EA
    Pharm Stat; 2006; 5(3):201-11. PubMed ID: 17080753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the leveling-off properties of the new bioequivalence limits for highly variable drugs of the EMA guideline.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2011 Nov; 44(4):497-505. PubMed ID: 21945487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioequivalence studies: biometrical concepts of alternative designs and pooled analysis.
    Zintzaras E; Bouka P
    Eur J Drug Metab Pharmacokinet; 1999; 24(3):225-32. PubMed ID: 10716060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population and individual bioequivalence: lessons from real data and simulation studies.
    Zariffa NM; Patterson SD
    J Clin Pharmacol; 2001 Aug; 41(8):811-22. PubMed ID: 11504268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-Based Approach for Designing an Efficient Bioequivalence Study for Highly Variable Drugs.
    Song E; Lee W; Kim BH
    Pharmaceuticals (Basel); 2021 Oct; 14(11):. PubMed ID: 34832883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating product bioequivalence for highly variable veterinary drugs.
    Claxton R; Cook J; Endrenyi L; Lucas A; Martinez MN; Sutton SC
    J Vet Pharmacol Ther; 2012 Apr; 35 Suppl 1():11-6. PubMed ID: 22413787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.