These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28620937)

  • 21. An iterative method to protect the type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover designs.
    Molins E; Labes D; Schütz H; Cobo E; Ocaña J
    Biom J; 2021 Jan; 63(1):122-133. PubMed ID: 33000873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On a reasonable disaggregate criterion of population bioequivalence admitting of resampling-free testing procedures.
    Wellek S
    Stat Med; 2000 Oct; 19(20):2755-67. PubMed ID: 11033573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of variability and carryover on average bioequivalence assessment: a simulation study.
    Sánchez MP; Ocaña J; Carrasco JL
    Pharm Stat; 2011; 10(2):135-42. PubMed ID: 22432131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioequivalence approaches for highly variable drugs and drug products.
    Haidar SH; Davit B; Chen ML; Conner D; Lee L; Li QH; Lionberger R; Makhlouf F; Patel D; Schuirmann DJ; Yu LX
    Pharm Res; 2008 Jan; 25(1):237-41. PubMed ID: 17891552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence.
    Tothfalusi L; Endrenyi L; Arieta AG
    Clin Pharmacokinet; 2009; 48(11):725-43. PubMed ID: 19817502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual bioequivalence testing under 2x3 designs.
    Chow SC; Shao J; Wang H
    Stat Med; 2002 Mar; 21(5):629-48. PubMed ID: 11870806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling type 1 error rate for sequential, bioequivalence studies with crossover designs.
    Rasmussen HE; Ma R; Wang JJ
    Pharm Stat; 2019 Jan; 18(1):96-105. PubMed ID: 30370634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.
    Diaz FJ; Berg MJ; Krebill R; Welty T; Gidal BE; Alloway R; Privitera M
    Clin Pharmacokinet; 2013 Dec; 52(12):1033-43. PubMed ID: 24085600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An approach for sample size determination of average bioequivalence based on interval estimation.
    Chiang C; Hsiao CF
    Stat Med; 2017 Mar; 36(7):1068-1082. PubMed ID: 28070984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative confidence intervals for the assessment of bioequivalence in four-period cross-over designs.
    Quiroz J; Ting N; Wei GC; Burdick RK
    Stat Med; 2002 Jul; 21(13):1825-47. PubMed ID: 12111892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal adaptive sequential designs for crossover bioequivalence studies.
    Xu J; Audet C; DiLiberti CE; Hauck WW; Montague TH; Parr AF; Potvin D; Schuirmann DJ
    Pharm Stat; 2016; 15(1):15-27. PubMed ID: 26538182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the bioequivalence of highly-variable drugs and drug products.
    Tothfalusi L; Endrenyi L; Midha KK; Rawson MJ; Hubbard JW
    Pharm Res; 2001 Jun; 18(6):728-33. PubMed ID: 11474774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New approach to assess bioequivalence parameters using generalized gamma mixed-effect model (model-based asymptotic bioequivalence test).
    Chen YI; Huang CS
    Stat Med; 2014 Feb; 33(5):786-97. PubMed ID: 24105871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Likelihood approach for evaluating bioequivalence of highly variable drugs.
    Du L; Choi L
    Pharm Stat; 2015; 14(2):82-94. PubMed ID: 25408492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cost-efficient higher-order crossover designs in comparative bioavailability studies.
    Zhou J; Yuan Y; Reynolds R; Raber S; Li Y
    Clin Pharmacokinet; 2006; 45(6):623-32. PubMed ID: 16719543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A modified large sample approach in the assessment of population bioequivalence.
    Quiroz J; Ting N; Wei GC; Burdick RK
    J Biopharm Stat; 2000 Nov; 10(4):527-44. PubMed ID: 11104391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of the repeated cross-over designs in assessing bioequivalence.
    Liu JP
    Stat Med; 1995 May 15-30; 14(9-10):1067-78; discussion 1079-80. PubMed ID: 7569501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the reference scaled bioequivalence semi-replicate method with other approaches: focus on human exposure to drugs.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2009 Aug; 38(1):55-63. PubMed ID: 19524039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of some properties of individual bioequivalence (IBE) from replicate-design studies.
    Tothfalusi L; Endrenyi L
    Int J Clin Pharmacol Ther; 2001 Apr; 39(4):162-6. PubMed ID: 11332872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On assessment of bioequivalence under a higher-order crossover design.
    Chow SC; Liu JP
    J Biopharm Stat; 1992; 2(2):239-56. PubMed ID: 1300216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.