These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 28620979)
1. An application of CIFAP for predicting the binding affinity of Chk1 inhibitors derived from 2-aminothiazole-4-carboxamide. Konyar D; Erdas O; Alpaslan FN; Buyukbingol E J Mol Recognit; 2017 Nov; 30(11):. PubMed ID: 28620979 [TBL] [Abstract][Full Text] [Related]
2. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors. Erdas O; Andac CA; Gurkan-Alp AS; Alpaslan FN; Buyukbingol E J Enzyme Inhib Med Chem; 2015; 30(5):809-15. PubMed ID: 25578823 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Analysis of Binding Sites for Predicting Binding Affinities in Drug Design. Erdas-Cicek O; Atac AO; Gurkan-Alp AS; Buyukbingol E; Alpaslan FN J Chem Inf Model; 2019 Nov; 59(11):4654-4662. PubMed ID: 31596082 [TBL] [Abstract][Full Text] [Related]
4. Docking-based 3D-QSAR study of pyridyl aminothiazole derivatives as checkpoint kinase 1 inhibitors. Balupuri A; Balasubramanian PK; Gadhe CG; Cho SJ SAR QSAR Environ Res; 2014; 25(8):651-71. PubMed ID: 24911214 [TBL] [Abstract][Full Text] [Related]
5. Structure-based design and optimization of 2-aminothiazole-4-carboxamide as a new class of CHK1 inhibitors. Huang X; Cheng CC; Fischmann TO; Duca JS; Richards M; Tadikonda PK; Reddy PA; Zhao L; Siddiqui MA; Parry D; Davis N; Seghezzi W; Wiswell D; Shipps GW Bioorg Med Chem Lett; 2013 May; 23(9):2590-4. PubMed ID: 23535330 [TBL] [Abstract][Full Text] [Related]
6. Modeling the binding affinity of p38α MAP kinase inhibitors by partial least squares regression. Basant N; Durante C; Cocchi M; Menziani MC Chem Biol Drug Des; 2012 Sep; 80(3):455-70. PubMed ID: 22642504 [TBL] [Abstract][Full Text] [Related]
7. Adventures in Scaffold Morphing: Discovery of Fused Ring Heterocyclic Checkpoint Kinase 1 (CHK1) Inhibitors. Yang B; Vasbinder MM; Hird AW; Su Q; Wang H; Yu Y; Toader D; Lyne PD; Read JA; Breed J; Ioannidis S; Deng C; Grondine M; DeGrace N; Whitston D; Brassil P; Janetka JW J Med Chem; 2018 Feb; 61(3):1061-1073. PubMed ID: 29301085 [TBL] [Abstract][Full Text] [Related]
8. Structure-based quantitative structure-activity relationship studies of checkpoint kinase 1 inhibitors. Du J; Xi L; Lei B; Lu J; Li J; Liu H; Yao X J Comput Chem; 2010 Nov; 31(15):2783-93. PubMed ID: 20839304 [TBL] [Abstract][Full Text] [Related]
9. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation. Du J; Sun H; Xi L; Li J; Yang Y; Liu H; Yao X J Comput Chem; 2011 Oct; 32(13):2800-9. PubMed ID: 21717478 [TBL] [Abstract][Full Text] [Related]
10. Combining docking-based comparative intermolecular contacts analysis and k-nearest neighbor correlation for the discovery of new check point kinase 1 inhibitors. Jaradat NJ; Khanfar MA; Habash M; Taha MO J Comput Aided Mol Des; 2015 Jun; 29(6):561-81. PubMed ID: 25956379 [TBL] [Abstract][Full Text] [Related]
11. Estimation of the ligand-binding free energy of checkpoint kinase 1 via non-equilibrium MD simulations. Mai NT; Lan NT; Vu TY; Duong PTM; Tung NT; Phung HTT J Mol Graph Model; 2020 Nov; 100():107648. PubMed ID: 32653524 [TBL] [Abstract][Full Text] [Related]
12. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors. Cormanich RA; Goodarzi M; Freitas MP Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427 [TBL] [Abstract][Full Text] [Related]
13. Pharmacophore modeling, molecular docking and molecular dynamics simulations toward identifying lead compounds for Chk1. Li Y; Peng J; Zhou Y; Li P; Li Y; Liu X; Siddique AN; Zhang L; Zuo Z Comput Biol Chem; 2018 Oct; 76():53-60. PubMed ID: 29940486 [TBL] [Abstract][Full Text] [Related]
14. Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins. Sugaya N J Chem Inf Model; 2014 Oct; 54(10):2751-63. PubMed ID: 25220713 [TBL] [Abstract][Full Text] [Related]
16. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Singh R; Bhardwaj VK; Sharma J; Das P; Purohit R Genomics; 2021 Jan; 113(1 Pt 2):707-715. PubMed ID: 33065246 [TBL] [Abstract][Full Text] [Related]
17. QSAR studies on aminothiazole derivatives as aurora a kinase inhibitors. Qin J; Xi L; Du J; Liu H; Yao X Chem Biol Drug Des; 2010 Dec; 76(6):527-37. PubMed ID: 21040493 [TBL] [Abstract][Full Text] [Related]
18. Structure-based de novo design and synthesis of aminothiazole-based p38 MAP kinase inhibitors. Park H; Lee S; Hong S Bioorg Med Chem Lett; 2015 Sep; 25(18):3784-7. PubMed ID: 26259807 [TBL] [Abstract][Full Text] [Related]
19. Identification of novel aminothiazole and aminothiadiazole conjugated cyanopyridines as selective CHK1 inhibitors. Gomha SM; Abdulla MM; Abou-Seri SM Eur J Med Chem; 2015 Mar; 92():459-70. PubMed ID: 25594740 [TBL] [Abstract][Full Text] [Related]
20. Structure-based design of novel Chk1 inhibitors: insights into hydrogen bonding and protein-ligand affinity. Foloppe N; Fisher LM; Howes R; Kierstan P; Potter A; Robertson AG; Surgenor AE J Med Chem; 2005 Jun; 48(13):4332-45. PubMed ID: 15974586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]