These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 28621127)
1. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF-TCNQ as an Example. Park C; Atalla V; Smith S; Yoon M ACS Appl Mater Interfaces; 2017 Aug; 9(32):27266-27272. PubMed ID: 28621127 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study on the charge transfer mechanism at donor/acceptor interface: Why TTF/TCNQ is inadaptable to photovoltaics? Li SB; Geng Y; Duan YA; Sun GY; Zhang M; Qiu YQ; Su ZM J Chem Phys; 2016 Dec; 145(24):244705. PubMed ID: 28049323 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ) as a Model Case. Sini G; Sears JS; Brédas JL J Chem Theory Comput; 2011 Mar; 7(3):602-9. PubMed ID: 26596294 [TBL] [Abstract][Full Text] [Related]
4. Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2+2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes. Kivala M; Boudon C; Gisselbrecht JP; Enko B; Seiler P; Müller IB; Langer N; Jarowski PD; Gescheidt G; Diederich F Chemistry; 2009; 15(16):4111-23. PubMed ID: 19266523 [TBL] [Abstract][Full Text] [Related]
5. Barrier height formation in organic blends/metal interfaces: case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111). Martínez JI; Abad E; Beltrán JI; Flores F; Ortega J J Chem Phys; 2013 Dec; 139(21):214706. PubMed ID: 24320393 [TBL] [Abstract][Full Text] [Related]
6. Electronic and magnetic properties of TTF and TCNQ covered Co thin films. van Geijn E; Wang K; de Jong MP J Chem Phys; 2016 May; 144(17):174708. PubMed ID: 27155648 [TBL] [Abstract][Full Text] [Related]
7. Dynamic self-assembly of charge-transfer nanofibers of tetrathiafulvalene derivatives with F4TCNQ. Jain A; Rao KV; Mogera U; Sagade AA; George SJ Chemistry; 2011 Oct; 17(44):12355-61. PubMed ID: 21922580 [TBL] [Abstract][Full Text] [Related]
8. Donor-acceptor complex of a new bis-TTF donor containing a pyridine diester spacer with TCNQ as the acceptor: a disappointing system. Kaboub L; Fabre JM; Vendier L; Legros JP Acta Crystallogr C; 2010 Aug; 66(Pt 8):o429-32. PubMed ID: 20679723 [TBL] [Abstract][Full Text] [Related]
9. The origin of the strong interfacial charge-transfer absorption in the surface complex between TiO2 and dicyanomethylene compounds. Jono R; Fujisawa J; Segawa H; Yamashita K Phys Chem Chem Phys; 2013 Nov; 15(42):18584-8. PubMed ID: 24085325 [TBL] [Abstract][Full Text] [Related]
10. Structural, Magnetic and DFT studies on a Charge-Transfer Salt of a Tetrathiafulvalenepyridyl-(1,5-diisopropyl) verdazyl Diradical Cation. Venneri S; Wilson J; Rawson JM; Pilkington M Chempluschem; 2015 Nov; 80(11):1624-1633. PubMed ID: 31973366 [TBL] [Abstract][Full Text] [Related]
11. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Kivala M; Diederich F Acc Chem Res; 2009 Feb; 42(2):235-48. PubMed ID: 19061332 [TBL] [Abstract][Full Text] [Related]
12. Modulating the electronic and optical properties of monolayer arsenene phases by organic molecular doping. Singh D; Gupta SK; Sonvane Y; Sahoo S Nanotechnology; 2017 Dec; 28(49):495202. PubMed ID: 29040070 [TBL] [Abstract][Full Text] [Related]
13. Doping Phosphorene with Holes and Electrons through Molecular Charge Transfer. Vishnoi P; Rajesh S; Manjunatha S; Bandyopadhyay A; Barua M; Pati SK; Rao CNR Chemphyschem; 2017 Nov; 18(21):2985-2989. PubMed ID: 28836713 [TBL] [Abstract][Full Text] [Related]
14. Electronic structures of intermolecular charge-transfer states in fast electron transfers with tetrathiafulvalene donor. Thermal and photoactivation of [2 + 4] cycloaddition to o-chloranil acceptor. Rosokha SV; Dibrov SM; Rosokha TY; Kochi JK Photochem Photobiol Sci; 2006 Oct; 5(10):914-24. PubMed ID: 17019469 [TBL] [Abstract][Full Text] [Related]
15. Conductive PVDF-HFP nanofibers with embedded TTF-TCNQ charge transfer complex. Gal-Oz R; Patil N; Khalfin R; Cohen Y; Zussman E ACS Appl Mater Interfaces; 2013 Jul; 5(13):6066-72. PubMed ID: 23745509 [TBL] [Abstract][Full Text] [Related]
16. A Linear Relationship between the Charge Transfer Amount and Level Alignment in Molecule/Two-Dimensional Adsorption Systems. Hou R; Xia Y; Yang S ACS Omega; 2020 Oct; 5(41):26748-26754. PubMed ID: 33111001 [TBL] [Abstract][Full Text] [Related]
17. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Rosokha SV; Kochi JK Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446 [TBL] [Abstract][Full Text] [Related]
19. Molecular charge transfer by adsorbing TCNQ/TTF molecules via π-π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons. Liu D; Yu G; Sun Y; Huang X; Guan J; Zhang H; Li H; Chen W Phys Chem Chem Phys; 2015 Jan; 17(2):941-50. PubMed ID: 25407886 [TBL] [Abstract][Full Text] [Related]
20. [Charge-transfer compounds based on TCNQ: synthesis and spectroscopic properties]. Wang PF; Chen YC Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1372-4. PubMed ID: 18800726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]