These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. siRNA delivery into tumor cells by lipid-based nanoparticles composed of hydroxyethylated cholesteryl triamine. Hattori Y; Nakamura T; Ohno H; Fujii N; Maitani Y Int J Pharm; 2013 Feb; 443(1-2):221-9. PubMed ID: 23279939 [TBL] [Abstract][Full Text] [Related]
9. Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis. Manzanares D; Pérez-Carrión MD; Jiménez Blanco JL; Ortiz Mellet C; García Fernández JM; Ceña V Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33291321 [TBL] [Abstract][Full Text] [Related]
10. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. Schomaker M; Heinemann D; Kalies S; Willenbrock S; Wagner S; Nolte I; Ripken T; Murua Escobar H; Meyer H; Heisterkamp A J Nanobiotechnology; 2015 Feb; 13():10. PubMed ID: 25645721 [TBL] [Abstract][Full Text] [Related]
11. Vascular endothelial growth factor-C siRNA delivered via calcium carbonate nanoparticle effectively inhibits lymphangiogenesis and growth of colorectal cancer in vivo. He XW; Liu T; Xiao Y; Feng YL; Cheng DJ; Tingting G; Zhang L; Zhang Y; Chen YX; Tingting G; Zhang L Cancer Biother Radiopharm; 2009 Apr; 24(2):249-59. PubMed ID: 19409048 [TBL] [Abstract][Full Text] [Related]
12. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Pittella F; Zhang M; Lee Y; Kim HJ; Tockary T; Osada K; Ishii T; Miyata K; Nishiyama N; Kataoka K Biomaterials; 2011 Apr; 32(11):3106-14. PubMed ID: 21272932 [TBL] [Abstract][Full Text] [Related]
13. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. He XW; Liu T; Chen YX; Cheng DJ; Li XR; Xiao Y; Feng YL Cancer Gene Ther; 2008 Mar; 15(3):193-202. PubMed ID: 18202713 [TBL] [Abstract][Full Text] [Related]
14. Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Ladewig K; Niebert M; Xu ZP; Gray PP; Lu GQ Biomaterials; 2010 Mar; 31(7):1821-9. PubMed ID: 19922997 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Aigner A; Kögel D Nanomedicine (Lond); 2018 Jan; 13(1):89-103. PubMed ID: 29199893 [TBL] [Abstract][Full Text] [Related]
16. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Lee JH; Lee K; Moon SH; Lee Y; Park TG; Cheon J Angew Chem Int Ed Engl; 2009; 48(23):4174-9. PubMed ID: 19408274 [TBL] [Abstract][Full Text] [Related]
17. Chitosan-coated red fluorescent protein nanoparticle as a potential dual-functional siRNA carrier. Liu Y; Song ZM; Deng X; Cui Y; Yang YF; Han K; Jin R; Wang H; Liu Y; Cao A Nanomedicine (Lond); 2015; 10(13):2005-16. PubMed ID: 26135851 [TBL] [Abstract][Full Text] [Related]
18. Prolonged gene silencing by siRNA/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles. Lee JY; Lee SH; Oh MH; Kim JS; Park TG; Nam YS J Control Release; 2012 Sep; 162(2):407-13. PubMed ID: 22800573 [TBL] [Abstract][Full Text] [Related]
19. Melittin derived peptides for nanoparticle based siRNA transfection. Hou KK; Pan H; Lanza GM; Wickline SA Biomaterials; 2013 Apr; 34(12):3110-9. PubMed ID: 23380356 [TBL] [Abstract][Full Text] [Related]
20. Amphiphilic gold nanoparticles displaying flexible bifurcated ligands as a carrier for siRNA delivery into the cell cytosol. Niikura K; Kobayashi K; Takeuchi C; Fujitani N; Takahara S; Ninomiya T; Hagiwara K; Mitomo H; Ito Y; Osada Y; Ijiro K ACS Appl Mater Interfaces; 2014 Dec; 6(24):22146-54. PubMed ID: 25466488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]